70 research outputs found

    A Review on Metallic Alloys Fabrication using Elemental Powder Blends by Laser Powder Directed Energy Deposition Process

    Get PDF
    The laser powder directed energy deposition process is a metal additive manufacturing technique, which can fabricate metal parts with high geometric and material flexibility. The unique feature of in-situ powder feeding makes it possible to customize the elemental composition using elemental powder mixture during the fabrication process. Thus, it can be potentially applied to synthesize industrial alloys with low cost, modify alloys with different powder mixtures, and design novel alloys with location-dependent properties using elemental powder blends as feedstocks. This paper provides an overview of using a laser powder directed energy deposition method to fabricate various types of alloys by feeding elemental powder blends. At first, the advantage of laser powder directed energy deposition in manufacturing metal alloys is described in detail. Then, the state-of-the-art research and development in alloys fabricated by laser powder directed energy deposition through a mix of elemental powders in multiple categories is reviewed. Finally, critical technical challenges, mainly in composition control are discussed for future development

    Fabrication and Characterization of AlₓCrCuFeNi₂ High-Entropy Alloys Coatings by Laser Metal Deposition

    Get PDF
    High-entropy alloys (HEAs) are becoming new hot spots in the metallic materials community, which are defined to contain equiatomic or close-to-equiatomic compositions. HEAs can possess many interesting mechanical properties, and in particular, they have the great potential to be used as coating materials requiring high hardness and wear resistance. In this study, the feasibility of fabrication AlₓCrCuFeNi₂ (x=0,0.75) HEAs was investigated via laser metal deposition from elemental powders. The microstructure, phase structure, and hardness were studied by an optical microscope, scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), electron backscatter diffraction (EBSD) and Vickers hardness tester. The bonding between the AlₓCrCuFeNi₂ (x = 0,0.75) HEAs and AISI 304 stainless steel were good combinations. The Al₀.₇₅CrCuFeNi₂ alloy consisted of columnar dendritic microstructure with Al/Ni enrichment in the dendritic regions. The phase structure of the AlₓCrCuFeNi₂ (x = 0,0.75) HEAs were face center cubic structure as identified by EBSD. Vickers hardness results indicate that the average hardness of CrCuFeNi₂ HEA was 175 HV. With the addition of aluminium, the Vickers hardness of Al0.75CrCuFeNi2 HEA increased to 285 HV

    Fabricating TiNiCu Ternary Shape Memory Alloy by Directed Energy Deposition via Elemental Metal Powders

    Get PDF
    In this paper, a TiNiCu shape memory alloy single-wall structure was fabricated by the directed energy deposition technique with a mixture of elemental Ti, Ni, and Cu powders following the atomic percentage of Ti50Ni45Cu5 to fully utilize the material flexibility of the additive manufacturing process to develop ternary shape memory alloys. The chemical composition, phase, and material properties at multiple locations along the build direction were studied, using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Vickers hardness test-ing, tensile testing, and differential scanning calorimetry. The location-dependent compositions of martensitic TiNi and austenitic TiNi phases, mechanical properties, and functional properties were investigated in detail. Variations were found in atomic compositions of Ti, Ni, and Cu elements along the build direction due to the complex interaction between elemental powders and laser pro-cessing. Good correlations were present among the chemical composition, phase constituent, hard-ness, and feature of phase transformation temperatures at various locations. The ultimate tensile strength of the as-deposited TiNiCu alloy is comparable with the previously reported additively manufactured TiNi binary alloys. By adding Cu, a much lower thermal hysteresis was achieved, which shows good feasibility of fabricating ternary TiNiCu shape memory alloys, using elemental powders in the directed energy deposition to adjust the thermal hysteresis

    Predictive Model for Thermal and Stress Field in Selective Laser Melting Process -- Part II

    Get PDF
    Finite Element Analysis (FEA) is used to predict the transient thermal cycle and optimize process parameters to analyze these effects on deformation and residual stresses. However, the process of predicting the thermal history in this process with the FEA method is usually time-consuming, especially for large-scale parts. In this paper, an effective predictive model of part deformation and residual stress was developed for accurately predicting deformation and residual stresses in large-scale parts. An equivalent body heat flux proposed from the single layer laser scan model was imported as the thermal load to the layer by layer model. The hatched layer is then heated up by the equivalent body heat flux and used as a basic unit element to build up the macroscale part. The thermal history and residual stress fields of two solid parts with different support structures during the SLM process were simulated. Layer heat source method has the capability for fast temperature prediction in the SLM process, while sacrificing modeling details for the computational time-saving purpose. Thus numerical modeling in this work can be a very useful tool for the parametric study of process parameters, residual stresses and deformations

    Authors\u27 biographies

    Get PDF
    his work was financially co-supported by the National Natural Science Foundation of China (grants 41190073, 41176041, 91128211), the National Basic Research Program of China (grant 42014CB440901), the Fundamental Research Funds for the Central Universities to SYSU and the GIGCAS 135 Project (grant Y234031001).The Kenting Mélange on the Hengchun Peninsula, Taiwan, formed through tectonic shearing of subduction complex lithologies, probably within the plate boundary subduction channel between the Eurasian and Philippine Sea plates, with further deformation and exhumation in the Pliocene-Pleistocene during arc-continent collision. Field relations reveal a structural gradation from normal stratified turbidite sequence (Mutan Formation) through broken formation to highly sheared Kenting Mélange containing allochthonous polygenic blocks. This gradation is consistent with an increase of average vitrinite reflection values from ~ 0.72% in the Mutan Formation through ~ 0.93% in the broken formation to ~ 0.99% in the mélange, suggesting temperatures of at least 140 °C during formation of the Kenting Mélange. Zircons from gabbro in the Kenting Mélange are dated as 25.46 ± 0.18 Ma, which together with geochemical data constrains the source to South China Sea oceanic lithosphere. In combination with the field relationships, vitrinite reflectance values, microfossil stratigraphy and offshore geophysical data from S and SE Taiwan, we propose that the Kenting Mélange initially formed at the subduction plate boundary from offscraped trench deposits. Minor Plio-Pleistocene microfossils (< 5%) occur within the mélange in proximity to slope basin of equivalent age and were likely sheared into the mélange during out-of-sequence thrusting associated with active arc-continent collision, which in the Hengchun Peninsula commenced after 6.5 Ma.PostprintPeer reviewe

    3D-printed integrative probeheads for magnetic resonance

    Get PDF
    射频探头前端作为核磁共振设备的核心部件之一,极大程度的决定着系统实验性能的优劣。探头前端通常由射频线圈、射频电路及样品检测管道等部分组成。现有的射频线圈制作技术主要是通过手工或机械手段按照所需的线圈形状进行绕制。但是,当线圈结构较为复杂、不规则,或体积尺寸较小时,常规绕制方法便难以满足结构设计和制造的精度需求,因此造成线圈性能的劣化,增大检测区域的射频场不均匀性,对核磁共振检测产生负面影响。本研究中,利用3D打印熔融沉积制造或光敏树脂选择性固化技术精确加工出一体化磁共振探头前端,使用常温液态金属填充线圈模型管路形成射频线圈,搭建出稳定的一体化磁共振射频探头。利用高精度3D打印和液态金属灌注技术制备出包含有射频线圈和定制化样品管道结构在内的一体化磁共振射频探头前端,克服了传统磁共振三维微型线圈成型困难、与样品腔匹配程度差等问题,提高了探头的信噪比,为定制化的磁共振检测提供了新思路。 该工作由厦门大学电子科学与技术学院陈忠教授、游学秋副研究员和孙惠军高级工程师共同指导完成,博士研究生谢君尧为论文第一作者。厦门大学电子科学与技术学院黄玉清高级工程师、王忻昌副教授、倪祖荣助理教授、硕士研究生张德超,化学化工学院杨朝勇教授、博士研究生李星锐,萨本栋微米纳米科学技术研究院陈宏教授为合作作者。【Abstract】Magnetic resonance (MR) technology has been widely employed in scientific research, clinical diagnosis and geological survey. However, the fabrication of MR radio frequency probeheads still face difficulties in integration, customization and miniaturization. Here, we utilized 3D printing and liquid metal filling techniques to fabricate integrative radio frequency probeheads for MR experiments. The 3D-printed probehead with micrometer precision generally consists of liquid metal coils, customized sample chambers and radio frequency circuit interfaces. We screened different 3D printing materials and optimized the liquid metals by incorporating metal microparticles. The 3D-printed probeheads are capable of performing both routine and nonconventional MR experiments, including in situ electrochemical analysis, in situ reaction monitoring with continues-flow paramagnetic particles and ions separation, and small-sample MR imaging. Due to the flexibility and accuracy of 3D printing techniques, we can accurately obtain complicated coil geometries at the micrometer scale, shortening the fabrication timescale and extending the application scenarios.The work is supported by the National Natural Science Foundation of China (Grants U1632274, 11761141010, U1805261, 11475142, 22073078, and 61801411), and China Postdoctoral Science Foundation (2017M622075).研究工作得到国家自然科学基金、中国博士后科学基金等项目支持

    Joining of Copper and Stainless Steel 304L using Direct Metal Deposition

    Get PDF
    In the current study, the feasibility of joining pure copper (Cu) and stainless steel 304L (SS304L) through direct metal deposition process was investigated by material characterization. Samples were analyzed in terms of microstructure, elemental distribution, and tensile testing. Direct depositing pure copper on SS304L shows copper was mechanically rather than metallurgical bonded with SS304L due to the poor dissolubility of iron in copper. Iron was diffused into copper with a diluted distance of 1.5 mm and above that, pure copper deposits were obtained. Columnar structure was observed at the copper region near the interface while the columnar grains became finer away from the interface and finally, equiaxed structure was observed. Tensile testing shows the yield strength and ultimate tensile strength of combined materials (copper and SS304L) are 123 MPa and 250 MPa and samples fractured at the copper section with a ductile fracture mechanism. The bi-material interface survived the tensile test. The yield strength and ultimate tensile strength of as-fabricated pure copper are 95.02 MPa and 186.66 MPa, respectively

    Fabrication of SS316L-IN625 Functionally Graded Materials by Powder-Fed Directed Energy Deposition

    No full text
    In this work, functionally graded materials of Stainless Steel 316L and Inconel 625 were fabricated using Directed Energy Deposition. Intermediate layers were built in between of SS316L and IN625. Pure SS316L and IN625 samples were also prepared. The results show microstructure varied sharply at the interface on pure SS316L and IN625 while changed gradually on gradient samples. Quantitative analysis reveals the consistence of designed and tested material composition at the gradient layers. Tensile testing shows the yield strength of graded samples is similar to that of pure IN625 while the ultimate tensile strength is approaching to that of pure SS316L due to the fracture at SS316L side. Microhardness measurements reveal the gradual change of hardness values over the gradient zone

    A Multi-Scale Residential Areas Matching Method Using Relevance Vector Machine and Active Learning

    No full text
    Multi-scale object matching is the key technology for upgrading feature cascade and integrating multi-source spatial data. Considering the distinctiveness of data at different scales, the present study selects residential areas in a multi-scale database as research objects and focuses on characteristic similarities. This study adopts the method of merging with no simplification, clarifies all the matching pairs that lack one-to-one relationships and places them into one-to-one matching pairs, and conducts similarity measurements on five characteristics (i.e., position, area, shape, orientation, and surroundings). The relevance vector machine (RVM) algorithm is introduced, and the method of RVM-based spatial entity matching is designed, thus avoiding the needs of weighing feature similarity and selecting matching thresholds. Moreover, the study utilizes the active learning approach to select the most effective sample for classification, which reduces the manual work of labeling samples. By means of 1:5000 and 1:25,000 residential areas matching experiments, it is shown that the RVM method could achieve high matching precision, which can be used to accurately recognize 1:1, 1:m, and m:n matching relations, thus improving automation and the intelligence level of geographical spatial data management
    corecore