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Abstract: In this paper, a TiNiCu shape memory alloy single-wall structure was fabricated by
the directed energy deposition technique with a mixture of elemental Ti, Ni, and Cu powders
following the atomic percentage of Ti50Ni45Cu5 to fully utilize the material flexibility of the additive
manufacturing process to develop ternary shape memory alloys. The chemical composition, phase,
and material properties at multiple locations along the build direction were studied, using scanning
electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Vickers hardness
testing, tensile testing, and differential scanning calorimetry. The location-dependent compositions
of martensitic TiNi and austenitic TiNi phases, mechanical properties, and functional properties were
investigated in detail. Variations were found in atomic compositions of Ti, Ni, and Cu elements along
the build direction due to the complex interaction between elemental powders and laser processing.
Good correlations were present among the chemical composition, phase constituent, hardness, and
feature of phase transformation temperatures at various locations. The ultimate tensile strength of
the as-deposited TiNiCu alloy is comparable with the previously reported additively manufactured
TiNi binary alloys. By adding Cu, a much lower thermal hysteresis was achieved, which shows
good feasibility of fabricating ternary TiNiCu shape memory alloys, using elemental powders in the
directed energy deposition to adjust the thermal hysteresis.

Keywords: additive manufacturing; directed energy deposition; elemental powder blends; shape
memory alloys; ternary TiNi alloys; material characterization

1. Introduction

Additive manufacturing (AM) has become a novel and essential fabrication method.
The layer-based additive feature makes AM more flexible in both geometry and materi-
als [1]. Directed energy deposition (DED) is an AM process that applies an energy source to
melt raw materials, such as metal powder or wire, and join them into solid parts [2]. Among
various DED-related techniques, laser and powders are commonly used energy sources
and raw materials, respectively [2]. Nowadays, as the manufacturing techniques of metal
powder is improving, various types of metallic materials and industrial alloys have been
made into pre-alloyed powders and thus used in DED, including steels [3–5], Inconel [6–8],
titanium alloys such as Ti-6Al-4V [9–11] and aluminum alloys [12,13]. Apart from using
a single type of pre-alloyed powder in DED, blending multiple types of powders creates
much more possibilities to generate new metallic materials and composites with more
advantages and, at the same time, the cost can be reduced [14]. Examples include mixing
metallic alloy powders with hard ceramic powders, such as TiC, SiC, and WC [15–18], to
gain high hardness and wear resistance, and blending various types of elemental metal
powders to synthesize industrial alloys and novel alloys, such as functionally graded alloys
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and high entropy alloys [19–24]. A schematic diagram for the mechanism of DED using
laser and pre-mixed powders is demonstrated in Figure 1.

Figure 1. The schematic of laser-based DED with pre-mixed powders as feedstock materials.

TiNi alloy has attracted much more attention in applications in various engineering
areas due to its unique shape memory effect and superelastic behavior [25,26]. Researchers
have found AM to be a good choice to fabricate TiNi since conventional machining is
challenging [27]. Several previous works attempted to fabricate TiNi alloys via pre-alloyed
TiNi powders [28,29]. Due to the high cost of producing pre-alloyed TiNi powders, blending
Ti and Ni elemental powders has become a novel approach to fabricate TiNi alloys with
more flexibility and low cost [27]. It was reported that a small amount of a third metal
element could be added to design new ternary shape memory alloys [30]. A good example
of metal elements that can act as the third element is Cu. Adding Cu in TiNi alloy to replace
a small portion of Ni attracts interest due to its capability to shorten thermal hysteresis,
which can be more welcomed in the field of actuator fabrication [30].

According to the high material flexibility of the DED process, adjusting material
properties by adding a third element in the Ti–Ni system can be carried out in a more
flexible way [31]. However, manufacturing ternary shape memory alloys by DED has not
been extensively reported. Shiva et al. [32] attempted to fabricate TiNiCu ternary alloys
via the DED process with elemental powders, and they compared material properties
among TiNiCu parts with different Cu compositions. However, some special aspects were
not reported in detail in [32]. For DED using elemental powders as feedstocks, it is also
worth mentioning the inhomogeneity of composition, microstructure, phase formation, and
material properties reported in the works of elemental powder-based DED [31]. The DED
process can cause anisotropic material behaviors due to its layer-wise fashion [33], and
for parts fabricated by DED with an elemental powder mixture, the interaction between
the powder mixture and energy is more complex than using pre-alloyed powders [31].
Thus, the composition of the final as-fabricated part can be location dependent with
compositional deviations [31]. In [32], the location information and the correlation among
chemical compositions, phase, and material behaviors at various locations within an as-
fabricated TiNiCu alloy part were not fully described. Therefore, in this work, we use a Ti,
Ni, and Cu elemental powder mixture to fabricate a TiNiCu ternary shape memory alloy to
find out more about the correlation among the composition, phase, mechanical properties,
and functional properties, which could provide a more comprehensive understanding of
the structure–property relationship in the TiNiCu ternary shape memory alloy, especially
when fabricated by the elemental powder-based DED process.

2. Materials and Methods
2.1. Materials

The feedstock for this DED experimental study is a mixture of near-spherical ele-
mental Ti, Ni, and Cu powders. The Ti, Ni, and Cu powders were supplied by AP&C,
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Atlantic Equipment Engineers, and Royal Metal Powders Inc., respectively. A Hitachi
S4700 scanning electron microscope (SEM) was applied to obtain images of powders. SEM
images of Ti, Ni, and Cu powders are shown in Figure 2. Those powders were weighted
according to the atomic percentage of 50 at.% Ti, 45 at.% Ni, and 5 at.% Cu. The weighted
Ti, Ni, and Cu powders were mixed and homogenized using a Turbula T2F powder mixer
for 20 min. Grade-2 Ti bar with a dimension of 2 × 1

2 ×
1
4 inch was selected as the substrate

material. The deposition was performed on the 2 × 1
2 inch horizontal surface. Before the

deposition experiment, the 2 × 1
2 inch flat surface was ground by sandpapers to remove

the surface oxidation layer and wiped with acetone to remove dust particles.

Figure 2. SEM images of elemental powders used in this work: (a) Ti; (b) Ni; (c) Cu.

2.2. DED Fabrication

The DED fabrication process in this work was carried out by an in-house developed
laser powder DED system, which consists of a continuous wave fiber laser manufactured by
IPG Photonics with a wavelength of 1064 nm and a maximum power of 1 kW, a deposition
platform controlled by computer numerical control (CNC) with x, y, and z movements, and
a powder feeder designed by Powder Motion Labs. The diameter of the laser beam was
set at 2 mm. During the deposition process, the laser power generated a melt pool on the
solid materials. At the same time, the powder mixture was carried by Ar gas and delivered
through a vertical powder nozzle. A TiNiCu single wall was deposited by applying the
laser beam to travel back and forth with a distance of 30 mm. The laser power was set at
600 W for the first layer and 400 W for the rest of the layers; the laser travel speed was
250 mm/min. In the meantime, the powder blend was fed into the melt pool steadily and
continuously. The deposition was performed in an Ar atmosphere. The average height of
the entire single wall is approximately 16 mm.

2.3. Microstructure, Element Composition, and Phase

After the deposition, a thin piece of the cross-section area of the single wall was
sectioned by wire electric discharge machining (EDM). The build direction (BD) is from
the bottom to the top. In order to analyze the material properties at certain locations,
five specific heights were marked as H1, H2, H3, H4, and H5 along the BD. The detailed
information of the specific locations of the single wall cross-section is illustrated in Figure 3.
H1 is a near-bottom location that is 2 mm above the bottom of the TiNiCu single wall,
while H5 is a near-top location with a distance of 16 mm from the bottom. H2, H3, and H4
equally divide the cross-section from H1 to H5 into four sections. At the region of each
specific height, the chemical composition and phase were studied to reveal the differences
at various locations.

The cross-section was mounted, ground, and polished using a Buehler EcoMet
250 grinder/polisher. The well-polished cross-section of the single wall was analyzed
using an FEI Helios NanoLab 600 Dual-Beam SEM equipped with Oxford Energy Disper-
sive Spectrometer. Both large area and small area energy dispersive spectroscopy (EDS)
analyses were carried out within the cross-section area of the single wall. The large area
EDS analysis was conducted at all five height locations with a rough area of 1 mm2. Specific
small areas were selected within various phases for the EDS spectrum analysis to determine
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the composition of Ti, Ni, and Cu. The X-ray diffraction (XRD) technique was used to
characterize the crystal structure. All five locations were analyzed by an X’Pert X-ray
diffractometer with a step size of 0.03◦.

Figure 3. Schematic of the location H1, H2, H3, H4 and H5 along the BD.

2.4. Hardness Test

Vickers hardness tests were performed using a Struers Duramin 5 Vickers hardness
tester equipped with a pyramidal diamond indenter. A thin slice of the TiNiCu single wall
was sectioned and polished for the hardness testing. The hardness measurement was taken
from 1 to 16 mm above the bottom, with an interval of 1 mm. For each measurement, the
indentation load was 1.96 N, and the dwell time was set at 10 s.

2.5. Tensile Test

Tensile tests were applied by an Instron 5969 universal testing machine to evaluate
the tensile strength of the as-deposited TiNiCu structure. The type of mini tensile sample
was designed, and more details about this design can be found in the previous work [34].
The sketch is shown in Figure 4. The gauge length of this mini tensile sample design is
3 mm. Samples with the horizontal direction and vertical direction were both prepared by
EDM and tested. Details of the location of sample extraction can be found in the section
of results and discussions. The testing speed (strain rate) was 0.003 mm/mm/s from the
start to fracture. The fracture surface was imaged by the Helios SEM, and discussion was
provided based on the fractographical feature.

Figure 4. The mini tensile sample design.

2.6. Phase Transformation Characterization

Differential scanning calorimetry (DSC) was used to identify the phase transformation
temperature of the as-deposited TiNiCu at various locations. In this work, a slice of the
cross-section was divided into four sections according to the five location points. As seen in
Figure 3, the four sections marked by the orange color between location points H1–H2, H2–
H3, H3–H4, and H4–H5 are named S12, S23, S34, and S45, respectively. A TA Instruments
Q2000 differential scanning calorimeter was utilized to run a heating and cooling cycle on
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each section. The range of the heating and cooling cycle was from 0 ◦C to 120 ◦C, with a
constant rate of 10 ◦C/min.

3. Results and Discussion
3.1. Element Composition and Microstructure

A picture of the as-deposited TiNiCu single wall structure is displayed in Figure 5.
The as-prepared cross-section of the TiNiCu deposition was analyzed by Helios SEM in
both the element composition and phase distribution. At each location, large area EDS
was applied for element composition study. The atomic compositions of Ti, Ni, and Cu
regarding the location from H1 up to H5 are plotted in Figure 6. From Figure 6, all three
elements have some variations along with BD. Ti and Cu start with a composition higher
than the as-mixed composition in the powder state and decrease gradually when the
location rises. In contrast, Ni begins with a lower composition and gradually increases.
At higher locations, the composition of the three elements becomes much closer to the
initial as-mixed composition Ti50Ni45Cu5. The element deviation at the lower height
might be due to a combined effect of dilution from the Ti substrate and powder flow rate
difference among different types of metal powders [35].

Figure 5. Image of the as-deposited TiNiCu single wall on Ti substrate.

Figure 6. Ti, Ni, and Cu element composition distribution along with the height locations.

SEM images were obtained for detailed analysis in microstructure and phase com-
position. Figure 7 is a combination of images of all five locations. Among the ten sub-
images, Figure 7a,c,e,g,i are SEM images of locations H1, H2, H3, H4, and H5, respectively.
Figure 7a,c,e,g,i shows the overall phase distribution, and Figure 7b,d,f,h,j shows higher
magnified SEM images of a specific region within Figure 7a,c,e,g,i for small area EDS
analysis on phases, respectively.

As shown in Figure 7a,c,e,g, locations H1, H2, H3, and H4 are all dominated by the
light gray phase as the matrix phase and the dark gray phase as the secondary phase,
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which disperses within the matrix. In general, it can also be seen that the area covered by
the dark gray phase decreases as the height increases. In Figure 7i, another light phase
that is brighter than the matrix is also detected. In Figure 7b,d,f,h,j, ten areas within these
three types of phases were picked for the EDS analysis. Areas 1, 3, 5, 7, and 9 were selected
within the matrix of five height locations, while Areas 2, 4, 6, and 8 were located inside of
darker secondary phases at the locations H1, H2, H3, and H4, respectively. At the height
of H5, Area 10 was drawn within the brighter secondary phase. All EDS analysis results
of the ten areas are listed in Table 1. In those EDS results, the relation between the atomic
percentage ratio of Ti and the sum of Ni and Cu is noticed. The ratio of atomic composition
Ti/(Ni + Cu) values is close to 1 in all matrices, which reveals that all five matrices are
recognized as the TiNi phase with a small amount of Cu substitution. In Areas 1, 3, and
5, the matrix Ti composition exceeds 50 at.%, which is considered the Ti-rich TiNi phase,
while matrix phases in Areas 7 and 9 are Ti-poor. Areas 2, 4, 6, and 8 are inside the darker
secondary phase, and their Ti/(Ni + Cu) ratios are all close to 2. Then, the suggested
phase will be the Ti2Ni type intermetallic phase, which includes the Cu that replaces a low
percentage of the Ni as well.

Table 1. The EDS results of ten selected areas in Figure 7.

Area No.
for EDS Ti at.% Ni at.% Cu at.%

1 51.2 38.4 10.4
2 66.3 29.6 4.1
3 51.4 40.9 7.7
4 67.3 30.2 2.5
5 51.0 42.8 6.2
6 64.6 31.5 3.9
7 49.4 45.8 4.9
8 63.9 33.1 3.0
9 48.2 46.2 5.6
10 35.3 42.7 21.9

Figure 7. Cont.



Appl. Sci. 2021, 11, 4863 7 of 15

Figure 7. SEM images of the as-deposited TiNiCu single wall at various locations along the BD:
(a,c,e,g,i)—Locations H1, H2, H3, H4, and H5, respectively; (b,d,f,h,j)—Locations H1, H2, H3, H4,
and H5, respectively with higher magnification for EDS analysis.

Area 10 is selected from the inner part of the brighter phase generated at the near-top
location H5 of the single wall. The EDS result in Table 1 gives that Ti at.% = 35.3%, Ni
at.% = 42.7%, and Cu at.% = 21.9%. According to the literature [36], the suggested phase
might be (Cu, Ni)2Ti, which is a type of Ti-poor secondary phase. Figure 7j also shows
micro-pores that are less than 1 mm in size. The micro-pores at the upper layer could be
due to the heat accumulation resulting in overheating at the upper layer.

3.2. Phase

XRD patterns of five locations are shown in Figure 8. From the bottom to the top,
four phases can be found, including the austenitic TiNi (labeled as A-phase in Figure 8),
martensitic TiNi (labeled as M-phase in Figure 8), intermetallic Ti2Ni, and Ti. The diffraction
peaks of those four phases are labeled using different red markers. At the H1 location,
austenitic TiNi, martensitic TiNi, and Ti give a strong signal, which is shown in Figure 8a.
The existence of Ti2Ni can also be found. The presence of the Ti crystal structure is mainly
due to the dilution effect near the bottom of the single wall. In Figure 8b, the Ti peaks cannot
be observed since the impact of dilution is largely reduced. The major existing phases
are austenitic TiNi, martensitic TiNi, and Ti2Ni. Figure 8c demonstrates that austenite
dominates, while the signals of the martensitic TiNi and Ti2Ni become less obvious. When
they go up to locations H4 and H5, as shown in Figure 8d,e, the martensitic TiNi and Ti2Ni
can hardly be observed, and the entirety of the XRD patterns is almost dominated only by
the austenite phase. For TiNi phases, the signal of the austenite phase starts from weak to
strong from the bottom to the top, while the martensitic phase follows an opposite tendency.
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At the lower location, the as-deposited structure consists of a combination of martensite
and austenite, while at the higher location, austenite becomes much more prevalent.

Figure 8. XRD patterns of five locations: (a) H1; (b) H2; (c) H3; (d) H4; (e) H5.

According to the finding in the EDS results, from the bottom to the top, the atomic
composition of Ti within the matrix area varies from Ti-rich (Ti at.% > 50 at.%) to Ti-poor
(Ti at.% < 50 at.%). It was mentioned in a previous research study that Ti-rich TiNi-based
shape memory alloy tends to exhibit a martensitic structure at room temperature since the
temperatures for phase transformation are higher [37]. The transformation temperatures
will also be discussed in Section 3.5. The decrease in the martensite signal correlates
with the gradual decrease in the Ti atomic composition and the constituent of Ti-rich
intermetallic Ti2Ni along with the BD, which is displayed in Figure 7. Thus, the XRD
results show good consistency with the composition study found in the EDS analysis.

3.3. Hardness

The Vickers hardness values were tested along the BD across the entire deposition.
The polished surface of the single wall cross-section was indented from 1 to 16 mm above
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the TiNiCu/Ti interfacial line (bottom line of the single wall). Hardness measurements
are plotted in Figure 9. In Figure 9, the zero height is set at the TiNiCu/Ti interfacial line.
It can be seen from Figure 9 that, from 1 to 10 mm, hardness values mostly fall into the
range of 200~250 HV0.2, which reflects the hardness of the martensite in the lower region.
There is a tendency of decline in the hardness from 1 to 10 mm within the martensite-rich
region. The decline is due to the decrease in Ti2Ni intermetallics from 1 to 10 mm. The
measured hardness value becomes higher starting from 11 mm, and it increases to > 300
HV0.2, which corresponds to the hard austenite-dominated regions [29]. The increase in
hardness at higher levels reflects the formation of the Ni-rich austenite phase since the
matrix becomes Ti-poor at the location H4, which is 12.5 mm above the interface.

Figure 9. Vickers hardness distribution along the BD.

3.4. Tensile Test

Mini tensile samples were extracted along the horizontal (parallel to the substrate
surface) and vertical direction (parallel to the BD). For the horizontal one, the entire sample
is mainly included in the region of 8~12 mm above the interface. The vertical one spans
from 13.5 to 3.5 mm above the bottom. Then, the gauge length of the vertical sample locates
in the range of 7~10 mm. To avoid sample misalignment, mini tensile samples need a
preload at the beginning of the test, which can also be found in previous works [38]. All
tensile tests were carried out at a constant strain rate of 0.003 mm/mm/s until the sample
fracture finally occurred. The stress and strain data points were collected and plotted as
stress–strain curves, shown in Figure 10.

Figure 10. Stress–strain curves: (a) Horizontal tensile sample; (b) vertical tensile sample.
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The stress–strain curves of both horizontal and vertical samples are recorded and
plotted in Figure 10, where the horizontal and vertical samples correspond to Figure 10a,b,
respectively. The ultimate tensile strength (UTS) values of the horizontal sample and the
vertical sample are 622 MPa and 447 MPa, respectively. The two curves are different in
feature mainly due to their different compositions of martensite and austenite. The concave
part of the vertical sample at the tensile strain range between 0.01 and 0.05 indicates the
martensite reorienting stage [39], while the horizontal sample includes less martensite; this
plateau region is not found obviously.

The SEM images of the fracture surface of the fractured samples are listed in Figure 11,
where Figure 11a,b indicates the horizontal sample and Figure 11c,d represents the vertical
sample. The fracture surface in Figure 11a,b,d shows the mix mode of the fracture with
both dimple-like features and microcracks within the fracture surface image. The ductile
feature is due to the ductile matrix, while the defects and secondary phases can cause
microcracks under tensile loading and finally result in brittle fracture. Figure 11c shows
brittle features. The martensite-rich vertical sample shows a lower UTS and mostly brittle
fracture at the fracture surface. The strain value at the fracture point of the vertical sample
is also lower than the horizontal sample. On the fracture surface of the vertical sample,
more pure brittle fracture regions can be found, such as that shown in Figure 11c. The
vertical sample displays more brittle features and a lower UTS result, as it includes more
Ti2Ni secondary phases along the direction of BD.

Figure 11. Fracture surface of the fractured tensile sample under SEM: (a,b) Horizontal sample; (c,d) vertical sample.

Researchers in [40,41] fabricated DEDed TiNi binary alloy parts through elemental
powder blend, and the UTS values of 250 MPa and 320 MPa were obtained, respectively.
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The fracture shows brittle features in [40]. While in [42], TiNi was built by DED with
pre-alloyed TiNi powder, and the UTS exceeds 700 MPa. Some other available reported
UTS values of TiNi using selective laser melting (SLM) and wire arc additive manufac-
turing (WAAM) include 601 MPa (SLM [43]), 690 ± 15 MPa (SLM [44]), and 571.4 ± 18.6
(WAAM [45]). These reported data are tabulated in Table 2 for comparison. Therefore, this
work obtains a much higher UTS value among DED works using an elemental powder
blend, and it is comparable with the TiNi binary alloys fabricated with AM processes other
than DED. In addition, it can still be improved when comparing with DED works with
pre-alloyed powders.

Table 2. Comparison of UTS of current work and other published AM TiNi alloys.

UTS (MPa) AM Processing Methods Ref.

622 for the horizontal sample
447 for the vertical sample DED (elemental powder) This work

250 DED (elemental powder) [40]
320 DED (elemental powder) [41]
780 DED (pre-alloyed) [42]
601 SLM [43]

690 ± 15 SLM [44]
571.4 ± 18.6 WAAM [45]

3.5. DSC Phase Transformation Analysis

The DSC exothermic/endothermic graphs of four different sections are shown in
Figure 12a–d. For each section, the procedure was set as a heating and cooling cycle:
heating to 120 ◦C from 0 ◦C with a constant heating rate of 10 ◦C/min (the lower part
of each graph), and then cooling back to 0 ◦C with a constant cooling rate of 10 ◦C/min
(the upper part of each graph). Peaks appear during the heating and cooling process,
which reflects the heat absorption or release between martensite and austenite phase
transformation. From Figure 12a–c, it can be observed that sections S12, S23, and S34 have
one martensite-to-austenite (M→A) peak during heating and one austenite-to-martensite
(A→M) peak during cooling, while no peak can be observed between the given temperature
range in S45.

The characteristic temperatures of S12, S23, and S34, including the austenite starting
temperature (As), austenite finishing temperature (Af), austenite peak temperature (Ap),
martensite starting temperature (Ms), martensite finishing temperature (Mf), and martensite
peak temperature (Mp) are determined from DSC graphs in Figure 12a–c. All of the phase
starting and finishing temperature points were determined by the tangent method. These
characteristic temperatures are all labeled in each DSC graph.

From Figure 12a–c, it can be found that S12, S23, and S34 experience transformation
during the heating and cooling temperature. In contrast, no transformation can be found
in S45 in the given temperature range. This indicates that S12, S23, and S34 include the
martensite TiNi phase before heating, while almost no martensite exists in S45. S12, S23,
and S34 exhibit some portion of the martensite phase at room temperature (~25 ◦C) since
their values of Mf and As are all higher than room temperature. For S45, it can be inferred
that the martensite transformation may occur at a low temperature that is lower than 0 ◦C.
Therefore, at room temperature, S45 consists of almost all austenite. This agrees well with
what is found in the aforementioned XRD results. In XRD results, no strong diffraction
pattern of the martensite phase can be detected in locations H4 and H5. From Figure 12a–c,
peak widths of M→A: |Af−As|, and A→M: |Ms−Mf| can also be determined. The
relation of peak widths among S12, S23, and S34 is S12 < S23 < S34. The temperature
range for the phase transformation becomes longer when the location gets higher, which
shows that the homogeneity of martensite is the highest at location H1, and it follows a
descending trend when going up along the BD direction [42].
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Figure 12. DSC heat flow–temperature curves of TiNiCu at four sections: (a) Section S12; (b) Section S23; (c) Section S34;
(d) Section S45.

Adding Cu to replace a certain atomic number of Ni was reported to be able to reduce
the thermal hysteresis, which is usually defined by the difference between Ap and Mp [46],
or the difference between Af and Ms [47]. In this work, the thermal hysteresis calculated by
|Ap−Mp| of these three sections can be found for S12 (11 ◦C), S23 (12 ◦C), and S34 (16 ◦C).
Peak widths and hysteresis of S12, S23, and S34 in this work are summarized in Table 3.
Several previously reported thermal hysteresis values of TiNiCu alloys and additively
manufactured TiNi alloys have been collected and listed together with S12, S23, and S34 in
Table 4 for comparison.

Table 3. Peak width and hysteresis of Sections S12, S23, and S34.

Section |Ms−Mf| (◦C) |Af−As| (◦C) |Ap−Mp| (Hysteresis) (◦C)

S12 10 8 11
S23 12 17 12
S34 27 28 16

The thermal hysteresis of TiNi is mostly within the range of 25~40 ◦C [48], as seen
from the TiNi binary alloys listed in Table 4 by both AM and non-AM methods. Table 4
indicates that most reported hysteresis values of TiNiCu ternary shape memory alloys
by various non-AM techniques are below 25 ◦C. There is very little reported hysteresis of
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TiNiCu by AM so far, and in this work, the TiNiCu fabricated by elemental powder-based
DED reaches a much more narrow range of 11~16 ◦C.

Table 4. Comparison of thermal hysteresis of TiNiCu and TiNi.

Material Type Processing Hysteresis (◦C) Ref.

TiNiCu

DED 11~16 This work
Plasma skull push–pull 21.1 [30]

Vacuum arc melting 23.8~30.6 [46]
Ingot metallurgy 5~19 [47]

Magnetron sputtering 9 [49]

TiNi

DED 35.3~45.9 [50]
SLM 30 [51]
SLM 28 [44]

Powder metallurgy 30~36 [52]

4. Conclusions

In this work, a TiNiCu ternary shape memory alloy single-wall structure was fabri-
cated by the DED process through an elemental powder mixture. As AM is a layer-based
manufacturing technique and the elemental powder mixture is a novel concept in AM,
the single-wall structure was equally separated into five location points along the BD to
perform comprehensive material characterization on the chemical composition, phase, me-
chanical properties, and functional properties with regard to various locations of interest.
The main conclusions are summarized below:

For the overall element composition along the BD, at the upper locations, the compo-
sitions of the three elements are much closer to the as-mixed composition. The small area
EDS analysis results show that all matrix phases are TiNi phases, where a small portion of
Ni atoms are replaced by Cu. At the lower locations, the main secondary phase is Ti2Ni.
The Ti2Ni composition decreases when the location goes up due to the decrease in the Ti
element composition. At the top of the as-deposited single-wall structure, a small amount
of the Ni-rich secondary phase exists where the Ti composition decreases to slightly below
50 at.%.

The XRD patterns indicate the increase in austenite TiNi and the decrease in martensite
TiNi from the bottom to the top, which is related to the changing of the compositions of Ti
and (Ni + Cu). The variations in the martensitic TiNi and austenitic TiNi compositions agree
well with the atomic compositions of Ti and (Ni + Cu). The average Vickers hardness at the
martensite-rich area (200~250 HV0.2) is lower than the austenite-rich area (300~450 HV0.2),
which also matches the XRD results well.

The UTS of the as-deposited TiNiCu tensile sample reaches 622 MPa along the hor-
izontal direction in the area with less of the martensite phase. The vertical sample that
includes martensite-rich areas within the gauge length gets a UTS of 447 MPa, and the
strain at the fracture is also lower than the horizontal sample. The UTS values of both are
comparable with other AM-based TiNi binary alloys.

Strong martensite–austenite transformation signals are witnessed from the DSC results
in sections S12, S23, and S34 within the 0~120 ◦C temperature range, which reflects a good
phase transformation response at room temperature. The three sections’ thermal hysteresis
values are much smaller than AM-based TiNi binary alloys. These results agree well with
reducing thermal hysteresis by adding Cu in the Ti–Ni binary system.

Author Contributions: Conceptualization, Y.C.; methodology, Y.C., X.Z.; formal analysis, Y.C.,
X.Z., J.W.N.; investigation, Y.C., M.M.P.; writing—original draft preparation, Y.C., X.Z., M.M.P.;
writing—review and editing, Y.C., X.Z., M.M.P., J.W.N., F.L.; supervision, J.W.N., F.L.; project admin-
istration, F.L.; funding acquisition, F.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by NSF, grant number CMMI 1625736.



Appl. Sci. 2021, 11, 4863 14 of 15

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors greatly acknowledge the research supports from the Intelligent
Systems Center (ISC), Material Research Center (MRC), and Department of Chemistry Shared
Instrument Lab at Missouri S&T for the help in sample preparation and material characterization.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Taheri, H.; Koester, L.W.; Bigelow, T.A.; Faierson, E.J.; Bond, L.J. In situ additive manufacturing process monitoring with an

acoustic technique: clustering performance evaluation using K-means algorithm. J. Manuf. Sci. Eng. 2019, 141, 041011. [CrossRef]
2. F42 Committee. Standard Guide for Directed Energy Deposition of Metals; ASTM International: West Conshohocken, PA, USA, 2016.
3. Wang, Z.; Palmer, T.A.; Beese, A.M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless

steel 304L made by directed energy deposition additive manufacturing. Acta Mater. 2016, 110, 226–235. [CrossRef]
4. Tan, Z.E.; Pang, J.H.L.; Kaminski, J.; Pepin, H. Characterisation of porosity, density, and microstructure of directed energy

deposited stainless steel AISI 316L. Addit. Manuf. 2019, 25, 286–296. [CrossRef]
5. Bai, Y.; Chaudhari, A.; Wang, H. Investigation on the microstructure and machinability of ASTM A131 steel manufactured by

directed energy deposition. J. Mater. Process. Technol. 2020, 276, 116410. [CrossRef]
6. Sui, S.; Chen, J.; Li, Z.; Li, H.; Zhao, X.; Tan, H. Investigation of dissolution behavior of laves phase in inconel 718 fabricated by

laser directed energy deposition. Addit. Manuf. 2020, 32, 101055. [CrossRef]
7. Hu, Y.; Lin, X.; Li, Y.; Zhang, S.; Gao, X.; Liu, F.; Huang, W. Plastic deformation behavior and dynamic recrystallization of Inconel

625 superalloy fabricated by directed energy deposition. Mater. Des. 2020, 186, 108359. [CrossRef]
8. Kistler, N.A.; Nassar, A.R.; Reutzel, E.W.; Corbin, D.J.; Beese, A.M. Effect of directed energy deposition processing parameters on

laser deposited Inconel®718: Microstructure, fusion zone morphology, and hardness. J. Laser Appl. 2017, 29, 022005. [CrossRef]
9. Wolff, S.; Lee, T.; Faierson, E.; Ehmann, K.; Cao, J. Anisotropic properties of directed energy deposition (DED)-processed

Ti–6Al–4V. J. Manuf. Process. 2016, 24, 397–405. [CrossRef]
10. Keist, J.S.; Palmer, T.A. Role of geometry on properties of additively manufactured Ti-6Al-4V structures fabricated using laser

based directed energy deposition. Mater. Des. 2016, 106, 482–494. [CrossRef]
11. Kistler, N.A.; Corbin, D.J.; Nassar, A.R.; Reutzel, E.W.; Beese, A.M. Effect of processing conditions on the microstructure, porosity,

and mechanical properties of Ti-6Al-4V repair fabricated by directed energy deposition. J. Mater. Process. Technol. 2019, 264,
172–181. [CrossRef]

12. Javidani, M.; Arreguin-Zavala, J.; Danovitch, J.; Tian, Y.; Brochu, M. Additive Manufacturing of AlSi10Mg Alloy Using Direct
Energy Deposition: Microstructure and Hardness Characterization. J. Therm. Spray Technol. 2017, 26, 587–597. [CrossRef]

13. Svetlizky, D.; Zheng, B.; Buta, T.; Zhou, Y.; Golan, O.; Breiman, U.; Haj-Ali, R.; Schoenung, J.M.; Lavernia, E.J.; Eliaz, N. Directed
energy deposition of Al 5xxx alloy using Laser Engineered Net Shaping (LENS®). Mater. Des. 2020, 192, 108763. [CrossRef]

14. Clayton, R.M. The Use of Elemental Powder Mixes in Laser-Based Additive Manufacturing. Master’s Thesis, Missouri University
of Science and Technology, Missouri, MO, USA, 2013.

15. Mahamood, R.M.; Akinlabi, E.T.; Shukla, M.; Pityana, S.L. Characterization of laser deposited Ti6Al4V/TiC composite powders
on a Ti6Al4V substrate. Lasers Eng. 2014, 29, 197–213.

16. Shen, M.-Y.; Tian, X.-J.; Liu, D.; Tang, H.-B.; Cheng, X. Microstructure and fracture behavior of TiC particles reinforced Inconel 625
composites prepared by laser additive manufacturing. J. Alloys Compd. 2018, 734, 188–195. [CrossRef]

17. Farayibi, P.K.; Folkes, J.; Clare, A.; Oyelola, O. Cladding of pre-blended Ti–6Al–4V and WC powder for wear resistant applications.
Surf. Coat. Technol. 2011, 206, 372–377. [CrossRef]

18. Li, N.; Xiong, Y.; Xiong, H.; Shi, G.; Blackburn, J.; Liu, W.; Qin, R. Microstructure, formation mechanism and property characteri-
zation of Ti + SiC laser cladded coatings on Ti6Al4V alloy. Mater. Charact. 2019, 148, 43–51. [CrossRef]

19. Chaudhary, V.; Yadav, N.M.S.K.K.; Mantri, S.A.; Dasari, S.; Jagetia, A.; Ramanujan, R.V.; Banerjee, R. Additive manufacturing of
functionally graded Co–Fe and Ni–Fe magnetic materials. J. Alloys Compd. 2020, 823, 153817. [CrossRef]

20. Karnati, S.; Zhang, Y.; Liou, F.F.; Newkirk, J.W. On the Feasibility of Tailoring Copper–Nickel Functionally Graded Materials
Fabricated through Laser Metal Deposition. Metals 2019, 9, 287. [CrossRef]

21. Collins, P.C.; Banerjee, R.; Banerjee, S.; Fraser, H.L. Laser deposition of compositionally graded titanium–vanadium and titanium–
molybdenum alloys. Mater. Sci. Eng. 2003, 352, 118–128. [CrossRef]

22. Chao, Q.; Guo, T.; Jarvis, T.; Wu, X.; Hodgson, P.; Fabijanic, D. Direct laser deposition cladding of AlxCoCrFeNi high entropy
alloys on a high-temperature stainless steel. Surf. Coat. Technol. 2017, 332, 440–451. [CrossRef]

23. Dobbelstein, H.; Gurevich, E.L.; George, E.P.; Ostendorf, A.; Laplanche, G. Laser metal deposition of a refractory TiZrNbHfTa
high-entropy alloy. Addit. Manuf. 2018, 24, 386–390. [CrossRef]

24. Gwalani, B.; Soni, V.; Waseem, O.A.; Mantri, S.A.; Banerjee, R. Laser additive manufacturing of compositionally graded
AlCrFeMoVx (x = 0 to 1) high-entropy alloy system. Opt. Laser Technol. 2019, 113, 330–337. [CrossRef]

http://doi.org/10.1115/1.4042786
http://doi.org/10.1016/j.actamat.2016.03.019
http://doi.org/10.1016/j.addma.2018.11.014
http://doi.org/10.1016/j.jmatprotec.2019.116410
http://doi.org/10.1016/j.addma.2020.101055
http://doi.org/10.1016/j.matdes.2019.108359
http://doi.org/10.2351/1.4979702
http://doi.org/10.1016/j.jmapro.2016.06.020
http://doi.org/10.1016/j.matdes.2016.05.045
http://doi.org/10.1016/j.jmatprotec.2018.08.041
http://doi.org/10.1007/s11666-016-0495-4
http://doi.org/10.1016/j.matdes.2020.108763
http://doi.org/10.1016/j.jallcom.2017.10.280
http://doi.org/10.1016/j.surfcoat.2011.07.033
http://doi.org/10.1016/j.matchar.2018.11.032
http://doi.org/10.1016/j.jallcom.2020.153817
http://doi.org/10.3390/met9030287
http://doi.org/10.1016/S0921-5093(02)00909-7
http://doi.org/10.1016/j.surfcoat.2017.09.072
http://doi.org/10.1016/j.addma.2018.10.008
http://doi.org/10.1016/j.optlastec.2019.01.009


Appl. Sci. 2021, 11, 4863 15 of 15

25. Jani, J.M.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater.
Des. 2014, 56, 1078–1113. [CrossRef]

26. Wen, C.; Yu, X.; Zeng, W.; Zhao, S.; Wang, L.; Wan, G.; Huang, S.; Grover, H.; Chen, Z. Mechanical behaviors and biomedical
applications of shape memory materials: A review. AIMS Mater. Sci. 2018, 5, 559–590. [CrossRef]

27. Halani, P.R.; Shin, Y.C. In Situ Synthesis and Characterization of Shape Memory Alloy Nitinol by Laser Direct Deposition. Met.
Mater. Trans. A 2012, 43, 650–657. [CrossRef]

28. Baran, A.; Polanski, M. Microstructure and properties of LENS (laser engineered net shaping) manufactured Ni-Ti shape memory
alloy. J. Alloys Compd. 2018, 750, 863–870. [CrossRef]

29. Marattukalam, J.J.; Singh, A.K.; Datta, S.; Das, M.; Balla, V.K.; Bontha, S.; Kalpathy, S.K. Microstructure and corrosion behavior of
laser processed NiTi alloy. Mater. Sci. Eng. C 2015, 57, 309–313. [CrossRef]

30. De Araújo, C.J.; Da Silva, N.J.; Da Silva, M.M.; Gonzalez, C.H. A comparative study of Ni–Ti and Ni–Ti–Cu shape memory alloy
processed by plasma melting and injection molding. Mater. Des. 2011, 32, 4925–4930. [CrossRef]

31. Chen, Y.; Zhang, X.; Parvez, M.M.; Liou, F. A Review on Metallic Alloys Fabrication Using Elemental Powder Blends by Laser
Powder Directed Energy Deposition Process. Materials 2020, 13, 3562. [CrossRef]

32. Shiva, S.; Palani, I.; Paul, C.; Mishra, S.; Singh, B. Investigations on phase transformation and mechanical characteristics of laser
additive manufactured TiNiCu shape memory alloy structures. J. Mater. Process. Technol. 2016, 238, 142–151. [CrossRef]

33. Carroll, B.E.; Palmer, T.A.; Beese, A.M. Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy
deposition additive manufacturing. Acta Mater. 2015, 87, 309–320. [CrossRef]

34. Karnati, S.; Hoerchler, J.L.; Liou, F.; Newkirk, J.W. Influence of gage length on miniature tensile characterization of powder bed
fabricated 304L stainless steel. In Proceedings of the 28th Solid Freeform Fabrication Symposium, Austin, TX, USA, 7–9 August
2017; pp. 7–9.

35. Chen, X. Fabrication and Characterization of Advanced Materials Using Laser Metal Deposition from Elemental Powder Mixture.
Ph.D. Thesis, Missouri University of Science and Technology, Missouri, MO, USA, 2018.

36. Zhu, W.J.; Duarte, L.I.; Leinenbach, C. Experimental study and thermodynamic assessment of the Cu–Ni–Ti system. Calphad 2014,
47, 9–22. [CrossRef]

37. Tadayyon, G.; Mazinani, M.; Guo, Y.; Zebarjad, S.M.; Tofail, S.A.; Biggs, M.J. Study of the microstructure evolution of heat treated
Ti-rich NiTi shape memory alloy. Mater. Charact. 2016, 112, 11–19. [CrossRef]

38. Zhang, X.; Chen, Y.; Liou, F. Fabrication of SS316L-IN625 functionally graded materials by powder-fed directed energy deposition.
Sci. Technol. Weld. Join. 2019, 24, 504–516. [CrossRef]

39. Zupanc, J.; Vahdat-Pajouh, N.; Schäfer, E. New thermomechanically treated NiTi alloys–a review. Int. Endod. J. 2018, 51, 1088–1103.
[CrossRef] [PubMed]

40. Wang, C.; Tan, X.; Du, Z.; Chandra, S.; Sun, Z.; Lim, C.; Tor, S.B.; Wong, C. Additive manufacturing of NiTi shape memory alloys
using pre-mixed powders. J. Mater. Process. Technol. 2019, 271, 152–161. [CrossRef]

41. Shiva, S.; Palani, I.; Mishra, S.; Paul, C.; Kukreja, L. Investigations on the influence of composition in the development of Ni–Ti
shape memory alloy using laser based additive manufacturing. Opt. Laser Technol. 2015, 69, 44–51. [CrossRef]

42. Kumar, S.; Marandi, L.; Balla, V.K.; Bysakh, S.; Piorunek, D.; Eggeler, G.; Das, M.; Sen, I. Microstructure–Property correlations for
additively manufactured NiTi based shape memory alloys. Materialia 2019, 8, 100456. [CrossRef]

43. Moghaddam, N.S.; Saghaian, S.E.; Amerinatanzi, A.; Ibrahim, H.; Li, P.; Toker, G.P.; Karaca, H.E.; Elahinia, M. Anisotropic tensile
and actuation properties of NiTi fabricated with selective laser melting. Mater. Sci. Eng. A 2018, 724, 220–230. [CrossRef]

44. Zhang, Q.; Hao, S.; Liu, Y.; Xiong, Z.; Guo, W.; Yang, Y.; Ren, Y.; Cui, L.; Ren, L.; Zhang, Z. The microstructure of a selective laser
melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability. Appl. Mater.
Today 2020, 19, 100547. [CrossRef]

45. Zeng, Z.; Cong, B.; Oliveira, J.; Ke, W.; Schell, N.; Peng, B.; Qi, Z.; Ge, F.; Zhang, W.; Ao, S. Wire and arc additive manufacturing of
a Ni-rich NiTi shape memory alloy: Microstructure and mechanical properties. Addit. Manuf. 2020, 32, 101051. [CrossRef]

46. Phukaoluan, A.; Khantachawana, A.; Kaewtathip, P.; Dechkunakorn, S.; Anuwongnukroh, N.; Santiwong, P.; Kajornchaiyakul, J.
Property Improvement of TiNi by Cu Addition for Orthodontics Applications. Appl. Mech. Mater. 2011, 87, 95–100. [CrossRef]

47. Sampath, V.; Srinithi, R.; Santosh, S.; Sarangi, P.P.; Fathima, J.S. The Effect of Quenching Methods on Transformation Characteristics
and Microstructure of an NiTiCu Shape Memory Alloy. Trans. Indian Inst. Met. 2020, 73, 1481–1488. [CrossRef]

48. Elahinia, M.H.; Hashemi, M.; Tabesh, M.; Bhaduri, S.B. Manufacturing and processing of NiTi implants: A review. Prog. Mater.
Sci. 2012, 57, 911–946. [CrossRef]

49. Zhang, H.J.; Qiu, C.J. A TiNiCu Thin Film Micropump Made by Magnetron Co-Sputtered Method. Mater. Trans. 2006, 47, 532–535.
[CrossRef]

50. Krishna, B.V.; Bose, S.; Bandyopadhyay, A. Laser Processing of Net-Shape NiTi Shape Memory Alloy. Met. Mater. Trans. A 2007,
38, 1096–1103. [CrossRef]

51. Zhang, B.; Chen, J.; Coddet, C. Microstructure and Transformation Behavior of in-situ Shape Memory Alloys by Selective Laser
Melting Ti–Ni Mixed Powder. J. Mater. Sci. Technol. 2013, 29, 863–867. [CrossRef]

52. Elsayed, A.; Umeda, J.; Kondoh, K. Effect of quenching media on the properties of TiNi shape memory alloys fabricated by
powder metallurgy. J. Alloys Compd. 2020, 842, 155931. [CrossRef]

http://doi.org/10.1016/j.matdes.2013.11.084
http://doi.org/10.3934/matersci.2018.4.559
http://doi.org/10.1007/s11661-011-0890-x
http://doi.org/10.1016/j.jallcom.2018.03.400
http://doi.org/10.1016/j.msec.2015.07.067
http://doi.org/10.1016/j.matdes.2011.05.051
http://doi.org/10.3390/ma13163562
http://doi.org/10.1016/j.jmatprotec.2016.07.012
http://doi.org/10.1016/j.actamat.2014.12.054
http://doi.org/10.1016/j.calphad.2014.06.002
http://doi.org/10.1016/j.matchar.2015.11.017
http://doi.org/10.1080/13621718.2019.1589086
http://doi.org/10.1111/iej.12924
http://www.ncbi.nlm.nih.gov/pubmed/29574784
http://doi.org/10.1016/j.jmatprotec.2019.03.025
http://doi.org/10.1016/j.optlastec.2014.12.014
http://doi.org/10.1016/j.mtla.2019.100456
http://doi.org/10.1016/j.msea.2018.03.072
http://doi.org/10.1016/j.apmt.2019.100547
http://doi.org/10.1016/j.addma.2020.101051
http://doi.org/10.4028/www.scientific.net/AMM.87.95
http://doi.org/10.1007/s12666-020-01909-9
http://doi.org/10.1016/j.pmatsci.2011.11.001
http://doi.org/10.2320/matertrans.47.532
http://doi.org/10.1007/s11661-007-9127-4
http://doi.org/10.1016/j.jmst.2013.05.006
http://doi.org/10.1016/j.jallcom.2020.155931

	Fabricating TiNiCu Ternary Shape Memory Alloy by Directed Energy Deposition via Elemental Metal Powders
	Recommended Citation

	Introduction 
	Materials and Methods 
	Materials 
	DED Fabrication 
	Microstructure, Element Composition, and Phase 
	Hardness Test 
	Tensile Test 
	Phase Transformation Characterization 

	Results and Discussion 
	Element Composition and Microstructure 
	Phase 
	Hardness 
	Tensile Test 
	DSC Phase Transformation Analysis 

	Conclusions 
	References

