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Abstract 

High-entropy alloys (HEAs) are becoming new hot spots in the metallic materials community, which are defined to 
contain equiatomic or close-to-equiatomic compositions. HEAs can possess many interesting mechanical properties, 
and in particular, they have the great potential to be used as coating materials requiring high hardness and wear 
resistance. In this study, the feasibility of fabrication AlxCrCuFeNi2 (x=0,0.75) HEAs was investigated via laser 
metal deposition from elemental powders. The microstructure, phase structure, and hardness were studied by an 
optical microscope, scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), electron 
backscatter diffraction (EBSD) and Vickers hardness tester. The bonding between the AlxCrCuFeNi2 (x = 0,0.75) 
HEAs and AISI 304 stainless steel were good combinations. The Al0.75CrCrFeNi2 alloy consisted of columnar 
dendritic microstructure with Al/Ni enrichment in the dendritic regions. The phase structure of the AlxCrCuFeNi2 (x 
= 0,0.75) HEAs were face center cubic structure as identified by EBSD. Vickers hardness results indicate that the 
average hardness of CrCuFeNi2 HEA was 175 HV. With the addition of aluminium, the Vickers hardness of 
Al0.75CrCuFeNi2 HEA increased to 285 HV.  
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1. Introduction 

Conventional metallurgical theory suggests that the multiple alloying elements in an alloy may result in the 
formation of complex compounds. Recently this paradigm has been broken by high-entropy alloys (HEAs) developed 
by Yeh et al.[1] HEAs are composed of five or more principle elements in equimolar or near-equimolar ratios. The 
high mixing entropy of multi-principle elements induces the formation of solid-solution structure, e.g., face center 
cubic (FCC) or body center cubic (BCC) or FCC combined with BCC [1–6].  The discovery of HEAs has brought a 
new alloy design concept and generated researchers’ interest in the past decade. An AlCrFeCoNi HEA was prepared 
by vacuum arc melting and exhibited excellent compressive strength 2004.23 MPa [2]. Another study of AlCrFeCuNix 
(0.6 ≤  x ≤ 1.4) HEAs was prepared by casting reported by Jinhong et al., which found the hardness of as-cast HEAs 
decreased as x increased from 1.0 to 1.4 [3]. Dong et al. investigated the AlCrFeNiMox (x = 0,0.2,0.5,0.8 and 1.0 in 
molar ratios) HEAs produced by vacuum melting [7]. Their work showed AlCrFeNiMo0.2 HEA possessed good 
fracture strength of 3222 MPa and plastic strain of 0.287, which implies its potential application in industrial areas. 
These HEAs were fabricated by casting or vacuum melting. Unlike the previous studies, this work will implement the 
laser metal deposition (LMD) method to fabricate the AlxCrCuFeNi2 (x = 0, 0.75 in molar ratios) HEAs.  

As an advanced additive manufacturing technology, LMD can accomplish layer-by-layer fabrication of near net-
shaped components by introducing a powder stream through a high energy laser beam [4,5,8–10]. A melt pool is 
formed by rastering the laser beam, and the powders are injected into the melt pool to deposit each layer during the 
LMD process. Layer by layer composition changes, the introduction of a dissimilar metal interlayer and control over 
the melt zone size can be accommodated [4,9–13]. A FeCoNiCrCu HEA coating was synthesized, and its 
microhardness reached 375 HV0.5, which was about 50% higher than that of the same alloy prepared by arc melting 
[4]. With the additional of titanium content, Al2CrFeNiCoCuTix (x = 0, 0.5, 1.0, 1.5 and 2.0 in molar ratios) HEAs 
showed good corrosion and wear resistance on Q235 steel substrate [10]. Few research has been devoted to the 
fabrication of AlCrCuFeNi2 HEAs by LMD. 

In this paper, the feasibility of fabrication AlxCrCuFeNi2 (x = 0, 0.75 in molar ratios) HEA coatings on AISI 304 
stainless steel (SS) was performed by laser metal deposition technology using elemental powders. The metallurgical 
bonding, microstructure, and Vickers hardness were investigated.  

2. Experimental 

2.1. LMD processing 

Gas-atomized elemental powders of aluminium (Al), chromium (Cr), copper (Cu), iron (Fe) and nickel (Ni) 
purchased from Atlantic Equipment Engineers Inc. was used as precursor materials. The particle size of the elemental 
powders provided by Atlantic Equipment Inc. is as tabulated in Table 1. The elemental powders were weighted in the 
required ratios and then mixed by a Turbula mixer (Glen Mills Inc., Clifton, NJ, USA) for 30 mins to obtain 
homogeneous blends. Elemental compositions (atomic %) of the as-blended HEAs are given in Table 2.  

 

Table 1. Particle size distribution of the elemental powders. 

Materials US Standard Mesh 

Al -100 

Cr -100 

Cu -100 

Fe -100 

Ni -100/+325 
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Table 2. Nominal compositions (atomic %) of HEAs.  

Alloys Al Cr Cu Fe Ni 

CrCuFeNi2 0 20 20 20 40 

Al0.75CrCuFeNi2 13 17 17 17 36 

 
The schematic of the LMD system is shown in Figure 1. The 1 kW continuous-wave YAG fiber laser (IPG, 

Photonics, Oxford, MA, USA) was used as a heat source with a beam diameter of 2 mm. The metallic powders were 
fed through a vibration X2 powder feed system (Powder Motion Labs, MO, USA). The powders were introduced into 
the melt pool by an alumina tube. Argon gas was used as a carrier gas to deliver the powder mixtures to the melt pool. 
The movement during the laser deposition was achieved through a computer numerical control (CNC) table.  

 

 

Fig. 1. Schematic of the laser metal deposition (LMD) system. 

 
Commercially procured AISI 304 SS bar stock (dimension: 2 inch × 2 inch × 0.25 inch) was used as the substrate 

and cleaned with acetone to clean the surface. A preheating scan was performed by running the laser across the 
substrate. The thin wall structure was built, and the laser power of the initial three layers was conducted at 700 W 
and 8.5% (3.36 g/min) powder feed rate. The remaining of the deposition was carried out at 600 W and 8.5% (3.36 
g/min) powder feed rate with 1 mm layer thickness.  

2.2. Characterization 

For microstructural characterization, the deposits were transverse cross-sectioned and prepared with standard 
metallographic methods. The samples were polished with 320-1200 grit SiC grinding paper, and the final 
mechanical polish was 0.05 µm silica suspension. The specimens were given the electrolytic etching in the nitric 
acid solution (70 mL nitric acid and 30 mL distilled water).  

A Hirox optical microscope investigated the AlxCrCuFeNi2 HEAs morphology. The scanning electron 
microscopy (SEM), elemental analysis using energy dispersive spectroscopy (EDS), and electron backscatter 
diffraction (EBSD) studies of the specimens were carried out in a Helios Nanolab 600 SEM coupled with an EDS 
and an EBSD detector. The obtained EBSD data was processed and analyzed using Aztec software. The hardness 
was obtained with a Struers Duramin hardness tester (Struers Inc., Cleveland, OH, USA) using a 9.81 N force and 
10 s load duration.  
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3. Results and discussion 

3.1. Microstructure 

Figure 2 shows the optical images of the deposited HEAs. The deposit was shown in the top area in Figure 2a while 
the bottom part was AISI 304 SS substrate. An explicit interface was seen between the deposit and the AISI 304 SS 
substrate. The columnar dendrite microstructure was observed from Figure 2b. Similarly, a good metallurgical 
bonding existed between Al0.75CrCuFeNi2 HEA and the AISI 304 SS substrate. The dendritic continued in 
Al0.75CrCuFeNi2 alloy. The growth direction of these columnar was identified to be along with the deposition 
direction, which could be correlated with the solidification direction during the LMD process.  

 

 

Fig. 2. Optical images of (a) the interface between CrCuFeNi2 HEA and AISI 304 SS substrate, (b) microstructure of CrCuFeNi2 HEA, (c) the 
interface between Al0.75CrCuFeNi2 HEA and AISI 304 SS substrate and (d) microstructure of Al0.75CrCuFeNi2 HEA.  

 

3.2. EDS and EBSD analysis 

The evolution in chemistry from the substrate to the CrCuFeNi2 HEA was characterized by EDS line scan first. 
The quantitative results are plotted in Figure 3a. The results measured by EDS of the AISI 304 SS substrate (Cr: ~18-
19 atomic %, Fe: ~70-71 atomic %, Ni: ~9-10 atomic % in Figure 3a) did not derive from the nominal AISI 304 SS 
chemical compositions. Mn (~ 1-2 atomic %) was detected by EDS in AISI 304 SS substrate but was not shown in 
Figure 3.  The elemental compositions of Cu (~18-21 atomic %) and Ni (~35-38 atomic %) increased while that of Fe 
(~23-26 atomic %) reduced, and Cr (~20 atomic %) remained changed from the substrate to the CrCuFeNi2 HEA 
deposit. A small amount of Cu (~1-2 atomic %) was detected in the substrate because the substrate was mixed with 
the HEA deposit. The distribution of the consisted compositions from the substrate to the Al0.75CrCuFeNi2 HEA was 
shown in Figure 3b. The constituents of the Al0.75CrCuFeNi2 HEA were determined by EDS (Al: ~9-10 atomic %, Cr: 
~19 atomic %, Cu: ~17 atomic %, Fe: ~20 atomic %, Ni: ~ 32-34 atomic %). The difference between the as-blended 
(13 atomic %) and as-deposited aluminium (~9-10 atomic %) compositions could be attributed to the inconsistency 
of powder capture efficiency and evaporation due to its low melting point.  
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Fig. 3. Elemental composition evolution (a) the interface between AISI 304 SS substrate and CrCuFeNi2 HEA, (b) the interface from AISI 304 
SS substrate to Al0.75CrCuFeNi2 HEA.  

 
EBSD and EDS measurements were conducted in the aim of differentiating structure and phase information of the 

AlxCrCuFeNi2 (x = 0, 0.75) alloys. Regions of interest and phase analysis of CrCuFeNi2 and Al0.75CrCuFeNi2 alloys 
are shown in Figures 4 and 5 respectively. Figures 4 and 5 indicate an FCC structure in both HEA fabrications. The 
phase fractions and the corresponding lattice parameter identified by EBSD are listed in Table 3. The zero solution is 
the fraction of the selected area whose crystal structure could not be solved by the software.  

 

Table 3 Summary of the lattice parameter and phase fraction (%) of the AlxCrCuFeNi2 HEAs obtained from EBSD analysis.  

Alloy Phase Name Space Group Lattice Parameter (Ǻ) Fraction (%) 

CrCuFeNi2 FCC Fm-3m (225) 3.66 88.2 

BCC Im-3m (229) 2.93 0.13 

Zero solution - - 11.67 

Al0.75CrCuFeNi2 FCC Fm-3m (225) 3.66 99.3 

BCC Im-3m (229) 2.93 0.09 

Zero solution - - 0.61 
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Fig.4. EBSD phase map indicates predominating FCC phase in the CrCuFeNi2 alloy. (a) The region of interest on CrCrFeNi2 alloy (b) Phase map 
shows predominantly FCC phase (represented by blue color) within the region of interest.  

 

 

Fig.5. EBSD phase map indicates predominating FCC phase in the Al0.75CrCuFeNi2 alloy. (a) The region of interest on Al0.75CrCuFeNi2 alloy, (b) 
Phase map shows predominantly FCC phase (represented by blue color) within the region of interest.  

 
Figures 6 and 7 show the EDS element maps obtained from the AlxCrCuFeNi2 HEAs. The Fe-Kα, Cr-Kα, Ni-Kα, 

Cu-Kα and Al-Kα signals were used to estimate the elemental compositions within the regions of interest in the 
deposits. EDS elemental compositions were gathered from the dendritic microstructures for the AlxCrCuFeNi2 (x = 0, 
0.75) HEAs. The standardless measurements are listed in Table 4. The microstructure of CrCuFeNi2 alloy exhibited a 
dendritic microstructure as reported previously. Based on the previous EBSD phase analysis, this dendritic phase was 
likely to be a single FCC phase. While it was observed a distinct contrast between the dendritic and interdendritic 
regions (as seen in Figure 6), this contrast could be attributed to the segregation of Cu (which tended to partition and 
segregate readily [14,15]) as in Figure 6e. Table 4 shows that Cu was enriched in the interdendritic regions. Figure 7 
indicates that with the addition of aluminium, Al0.75CrCuFeNi2 alloy contained predominantly two phases. Associated 
with the results from Table 4, the dendritic phase was observed to be Al and Ni rich (Al+Ni: ~41 atomic %, Fe+Cr: 
~18 atomic %), while the interdendritic microstructure was rich in Fe and Cr (Al+Ni: ~28 atomic %, Fe+Cr: ~52 
atomic %). The Cu was deficient in the interdendritic regions.  
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Fig.6. EDS elemental maps of CrCuFeNi2 alloy, (a) region of interest, (b) element map of Fe, (c) element map of Cr, (d) element map of Ni and 
(e) element map of Cu.  

 

 

Fig.7. EDS elemental maps of Al0.75CrCuFeNi2 alloy, (a) region of interest, (b) element map of Fe, (c) element map of Cr, (d) element map of Ni, 
(e) element map of Cu and (f) element map of Al. 
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Table 4 Elemental compositions of the elements at different regions in atomic % for the CrCuFeNi2 and Al0.75CrCrFeNi2 

alloys. 

Alloy Area Al Cr Cu Fe Ni 

CrCuFeNi2 Nominal 0 20 20 20 40 

Dendritic 0 18.5 18.7 27.1 35.7 

Interdendritic 0 16.9 25.9 21.4 35.8 

Al0.75CrCuFeNi2 Nominal 13 17 17 17 36 

Dendritic 15 7.3 41.4 10.3 26 

Interdendritic 8 20 24 28 20 

 

 
From the mixing enthalpy of atom-pair as listed in Table 5, it clearly shows that the mixing of enthalpy of Al and 

Ni is higher (-22 kJ/mol) than of other atom-pair. It indicates that Al and Ni atoms tend to form atom pairs and 
segregate. Similar results have been reported previously, with this microstructure being attributed to the spinodal 
decomposition [2,6,16–18]. 

Table 5 Mixing enthalpy of different atom-pair in the CrCuFeNi2 and Al0.75CrCrFeNi2 alloys [19]. 

ΔHmix (kJ/mol) Cu Cr Al Ni 

Fe 13 -1 -11 -2 

Cu - 12 -1 4 

Cr - - -10 -7 

Al - - - -22 

3.3. Vickers hardness 

Figure 8 gives the Vickers hardness profiles of the AlxCrCuFeNi2 (x = 0, 0.75) alloys deposits on the AISI 304 SS 
substrates. The Vickers hardness of CrCuFeNi2 alloy was around 175 HV, which could be attributed to the solid 
solution strengthening. Table 6 gives the Vickers hardness of various alloys, including AISI 304 SS, Inconel 625 and 
7075-T6 aluminium [20,21], and Al0.75CrCuFeNi2 alloy has the highest average hardness of 285 HV. With the addition 
of aluminium, the average Vickers hardness of Al0.75CrCuFeNi2 HEA reached 285 HV, because the second phase 
strengthening blocked the dislocation [6,18]. The high hardness of Al0.75CrCuFeNi2 HEA coating is expected to 
correlate with good performance in strength and wear resistance [10,13].  
 

 

Figure 8 Vickers hardness profiles of the AlxCrCuFeNi2 (x = 0,0.75) alloys. 
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Table 6 Vickers hardness of various alloys. 

Alloy Hardness (HV) Reference 

CrCuFeNi2 175 This work 

Al0.75CrCuFeNi2 285 This work 

AISI 304 SS 160 This work 

Inconel 625  156 [21] 

7075-T6 aluminium  118 [20] 

 

4. Conclusions 

AlxCrCuFeNi2 (x = 0,0.75 in molar ratios) HEAs were coated on AISI 304 stainless steel substrate via laser metal 
deposition technology. The metallurgical bonding, microstructure, and the Vickers hardness were investigated and 
discussed. The good metallurgical bonding was observed between the HEA coatings and the substrate. The 
AlxCrCuFeNi2 (x = 0,0.75) HEAs coating exhibited columnar dendritic microstructure and FCC structure identified 
by EBSD. CrCuFeNi2 HEA was found to have an average hardness of 175 HV, while Al0.75CrCuFeNi2 HEA has a 
hardness of 285 HV.  
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