288 research outputs found

    Why torus-unstable solar filaments experience failed eruption?

    Get PDF
    To investigate the factors that control the success and/or failure of solar eruptions, we study the magnetic field and 3-Dimensional (3D) configuration of 16 filament eruptions during 2010 July - 2013 February. All these events, i.e., erupted but failed to be ejected to become a coronal mass ejection (CME), are failed eruptions with the filament maximum height exceeding 100Mm100 Mm. The magnetic field of filament source regions is approximated by a potential field extrapolation method. The filament 3D configuration is reconstructed from three vantage points by the observations of STEREO Ahead/Behind and SDO spacecraft. We calculate the decay index at the apex of these failed filaments and find that in 7 cases, their apex decay indexes exceed the theoretical threshold (ncrit=1.5n_{crit} = 1.5) of the torus instability. We further determine the orientation change or rotation angle of each filament top during the eruption. Finally, the distribution of these events in the parameter space of rotation angle versus decay index is established. Four distinct regimes in the parameter space are empirically identified. We find that, all the torus-unstable cases (decay index n>1.5n > 1.5), have a large rotation angles ranging from 50∘−130∘50^\circ - 130^\circ. The possible mechanisms leading to the rotation and failed eruption are discussed. These results imply that, besides the torus instability, the rotation motion during the eruption may also play a significant role in solar eruptions

    Vertices with the Second Neighborhood Property in Eulerian Digraphs

    Full text link
    The Second Neighborhood Conjecture states that every simple digraph has a vertex whose second out-neighborhood is at least as large as its first out-neighborhood, i.e. a vertex with the Second Neighborhood Property. A cycle intersection graph of an even graph is a new graph whose vertices are the cycles in a cycle decomposition of the original graph and whose edges represent vertex intersections of the cycles. By using a digraph variant of this concept, we prove that Eulerian digraphs which admit a simple dicycle intersection graph have not only adhere to the Second Neighborhood Conjecture, but have a vertex of minimum outdegree that has the Second Neighborhood Property.Comment: fixed an error in an earlier version and made structural change

    Physics perspectives of heavy-ion collisions at very high energy

    Full text link
    Heavy-ion collisions at very high colliding energies are expected to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. We illustrate the potential of future experimental studies of the initial particle production and formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.Comment: 35 pages in Latex, 29 figure

    Gut microbiota from essential tremor patients aggravates tremors in mice

    Get PDF
    Background and objectiveEssential tremor (ET) lacks effective treatments because its underlying mechanism is largely unknown, but may involve gut microbiota via the microbiome-gut-brain axis. We explored the effects of gut microbiota on ET in mice.MethodsSpecific pathogen-free C57BL/6J mice were gavaged with stools from ET patients or matched healthy individuals. After 3 weeks of gavaging, behavioral tests were performed on all mice. Next, each mouse was injected with harmaline to induce tremors. The tremor duration was recorded; the tremor score was estimated every 30 min. Behavioral tests were repeated after modeling. Intestinal tissues and fecal samples of the mice were examined using histology and 16Sr DNA sequencing, respectively.ResultsCompared with mice receiving microbiota from healthy controls, mice receiving fecal suspensions from ET patients showed worse performance in the pre-modeling behavioral tests. After modeling, ET-group mice showed significantly greater tremor scores, longer tremor duration, and worse motor performance. They also had significantly lower body weight and lower fecal pellet count. Pathological scoring revealed more severe intestinal lesions in ET-group mice. The 16S rDNA sequencing data revealed significant differences in microbiota indices, and a correlation between these indices and tremors in mice. Functional predictions indicated that the abundance of GABA-related enzymes was altered in ET-group mice.ConclusionMice transplanted with gut microbiota from ET patients showed worse performance in behavioral tests. After modeling, ET-group mice presented longer tremor duration, higher tremor score, and worse motor performance. This study provides evidence for gut microbiota dysbiosis that may affect the pathogenesis of ET

    A‐to‐I RNA editing in Klebsiella pneumoniae regulates quorum sensing and affects cell growth and virulence

    Get PDF
    Millions of adenosine (A) to inosine (I) RNA editing events are reported and well-studied in eukaryotes; however, many features and functions remain unclear in prokaryotes. By combining PacBio Sequel, Illumina whole-genome sequencing, and RNA Sequencing data of two Klebsiella pneumoniae strains with different virulence, a total of 13 RNA editing events are identified. The RNA editing event of badR is focused, which shows a significant difference in editing levels in the two K. pneumoniae strains and is predicted to be a transcription factor. A hard-coded Cys is mutated on DNA to simulate the effect of complete editing of badR. Transcriptome analysis identifies the cellular quorum sensing (QS) pathway as the most dramatic change, demonstrating the dynamic regulation of RNA editing on badR related to coordinated collective behavior. Indeed, a significant difference in autoinducer 2 activity and cell growth is detected when the cells reach the stationary phase. Additionally, the mutant strain shows significantly lower virulence than the WT strain in the Galleria mellonella infection model. Furthermore, RNA editing regulation of badR is highly conserved across K. pneumoniae strains. Overall, this work provides new insights into posttranscriptional regulation in bacteria

    Potential role of serum hypoxia-inducible factor 1alpha as a biomarker of delayed cerebral ischemia and poor clinical outcome after human aneurysmal subarachnoid hemorrhage: A prospective, longitudinal, multicenter, and observational study

    Get PDF
    ObjectiveHypoxia-inducible factor 1alpha (HIF-1α) functions as a crucial transcriptional mediator in hypoxic and ischemic brain response. We endeavored to assess the prognostic significance of serum HIF-1α in human aneurysmal subarachnoid hemorrhage (aSAH).MethodsIn this prospective, longitudinal, multicenter, and observational study of 257 patients with aSAH and 100 healthy controls, serum HIF-1α levels were quantified. Univariate analyses, followed by multivariate analyses, were performed to discern the relationship between serum HIF-1α levels and severity and delayed cerebral ischemia (DCI) plus poststroke 6-month poor outcome [extended Glasgow outcome scale (GOSE) scores of 1–4]. Predictive efficiency was determined under the receiver operating characteristic (ROC) curve.ResultsThere were significantly increased serum HIF-lα levels after aSAH, in comparison to controls (median, 288.0 vs. 102.6 pg/ml; P < 0.001). Serum HIF-lα levels were independently correlated with Hunt–Hess scores [ÎČ, 78.376; 95% confidence interval (CI): 56.446–100.305; P = 0.001] and modified Fisher scores (ÎČ, 52.037; 95% CI: 23.461–80.614; P = 0.002). Serum HIF-lα levels displayed significant efficiency for discriminating DCI risk [area under ROC curve (AUC), 0.751; 95% CI: 0.687–0.815; P < 0.001] and poor outcome (AUC, 0.791; 95% CI: 0.736–0.846; P < 0.001). Using the Youden method, serum HIF-1α levels >229.3 pg/ml predicted the development of DCI with 92.3% sensitivity and 48.4% specificity and serum HIF-1α levels >384.0 pg/ml differentiated the risk of a poor prognosis with 71.4% sensitivity and 81.1% specificity. Serum HIF-1α levels >229.3 pg/ml were independently predictive of DCI [odds ratio (OR), 3.061; 95% CI: 1.045–8.965; P = 0.041] and serum HIF-1α levels >384.0 pg/ml were independently associated with a poor outcome (OR, 2.907; 95% CI: 1.403–6.024; P = 0.004). The DCI predictive ability of their combination was significantly superior to those of Hunt–Hess scores (AUC, 0.800; 95% CI: 0.745–0.855; P = 0.039) and modified Fisher scores (AUC, 0.784; 95% CI: 0.726–0.843; P = 0.004). The prognostic predictive ability of their combination substantially exceeded those of Hunt–Hess scores (AUC, 0.839; 95% CI: 0.791–0.886; P < 0.001) and modified Fisher scores (AUC, 0.844; 95% CI: 0.799–0.890; P < 0.001).ConclusionElevated serum HIF-lα levels after aSAH, in independent correlation with stroke severity, were independently associated with DCI and 6-month poor outcome, substantializing serum HIF-lα as a potential prognostic biomarker of aSAH

    Endothelial Atg7 Deficiency Ameliorates Acute Cerebral Injury Induced by Ischemia/Reperfusion

    Get PDF
    Ischemic strokes often result in cerebral injury due to ischemia/reperfusion (I/R). Although the local inflammatory responses are known to play a primary role in the brain I/R injury, the underlying mechanism remains unclear. In the current study, we investigated the effect of brain endothelial Atg7 (autophagy related 7) depletion in the acute brain injury induced by ischemia and reperfusion. Endothelial knockout of Atg7 in mice (Atg7 eKO) was found to significantly attenuate both the infarct volume and the neurological defects induced by I/R when compared to the controls. In fact, brain inflammatory responses induced by I/R were alleviated by the Atg7 eKO. Furthermore, an increased expression of pro-inflammatory cytokines, including IL-1ÎČ, IL-6, IL-8, and TNF-α, was observed in brain endothelial cells in response to oxygen/glucose depletion/reoxygenation, which was decreased by the shRNA-mediated Atg7 knockdown. Interestingly, Atg7 knockdown reduced IKKÎČ phosphorylation, leading to NF-ÎșB deactivation and downregulation of the pro-inflammatory cytokines mRNA levels. Further, Atg7 transcriptional regulation function is independent of its role in autophagy. Taken together, our results demonstrated that brain endothelial Atg7 contributes to brain damage during I/R by modulating the expression of pro-inflammatory cytokines. Depletion of Atg7 in brain endothelium has a neuroprotective effect against the ischemia/reperfusion-induced acute cerebral injury during stroke
    • 

    corecore