1,925 research outputs found

    N′-(5-ethoxycarbonyl-3,4-dimethyl-pyrrol-2-yl-methylidene)-4-hydroxybenzohydrazide monohydrate, C17H21N3O5

    Get PDF
    Abstract C17H21N3O5, monoclinic, P21/n (no. 14), a = 9.2278(16) Å, b = 15.093(3) Å, c = 12.698(2) Å, β = 105.195(12)°, V = 1706.7(5) Å3, Z = 4, R gt(F) = 0.0553, wR ref(F 2) = 0.1662, T = 296 K

    Workspace Analysis of a Novel Parallel Robot Named 3-R2H2S with Three Freedoms

    Get PDF
    Abstract: In order to meet the sorting and packing needs of the drug and food industries, a novel parallel robot mechanism named 3-R2H2S is proposed in this study, the kinematics equation of the robot was deduced and the inverse kinematics was calculated. The workspace model of the robot is analyzed by the boundary search method through the MATLAB and ADAMS kinematics software. The analysis results show that the robot has a large effective workspace with smooth boundary and can be widely applied in the field of industrial robots, the kinematics of micro robots and 3D coordinate measurements and the workspace of the robot can meet the needs of drug and food automation production line

    Overexpression of the Tomato Pollen Receptor Kinase LePRK1 Rewires Pollen Tube Growth to a Blebbing Mode

    Get PDF
    The tubular growth of a pollen tube cell is crucial for the sexual reproduction of flowering plants. LePRK1 is a pollen-specific and plasma membrane–localized receptor-like kinase from tomato (Solanum lycopersicum). LePRK1 interacts with another receptor, LePRK2, and with KINASE PARTNER PROTEIN (KPP), a Rop guanine nucleotide exchange factor. Here, we show that pollen tubes overexpressing LePRK1 or a truncated LePRK1 lacking its extracellular domain (LePRK1ΔECD) have enlarged tips but also extend their leading edges by producing “blebs.” Coexpression of LePRK1 and tomato PLIM2a, an actin bundling protein that interacts with KPP in a Ca2+-responsive manner, suppressed these LePRK1 overexpression phenotypes, whereas pollen tubes coexpressing KPP, LePRK1, and PLIM2a resumed the blebbing growth mode. We conclude that overexpression of LePRK1 or LePRK1ΔECD rewires pollen tube growth to a blebbing mode, through KPP- and PLIM2a-mediated bundling of actin filaments from tip plasma membranes. Arabidopsis thaliana pollen tubes expressing LePRK1ΔECD also grew by blebbing. Our results exposed a hidden capability of the pollen tube cell: upon overexpression of a single membrane-localized molecule, LePRK1 or LePRK1ΔECD, it can switch to an alternative mechanism for extension of the leading edge that is analogous to the blebbing growth mode reported for Dictyostelium and for Drosophila melanogaster stem cells.Fil: Gui, Cai Ping. Chinese Academy of Sciences; República de ChinaFil: Dong, Xin. Chinese Academy of Sciences; República de ChinaFil: Liu, Hai Kuan. Chinese Academy of Sciences; República de ChinaFil: Huang, Wei Jie. Chinese Academy of Sciences; República de ChinaFil: Zhang, Dong. Chinese Academy of Sciences; República de ChinaFil: Wang, Shu Jie. Chinese Academy of Sciences; República de ChinaFil: Barberini, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Gao, Xiao Yan. Chinese Academy of Sciences; República de ChinaFil: Muschietti, Jorge Prometeo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; ArgentinaFil: McCormick, Sheila. University of California at Berkeley; Estados UnidosFil: Tang, Wei Hua. Chinese Academy of Sciences; República de China. University of California at Berkeley; Estados Unido

    Comparative genomics study of polyhydroxyalkanoates (PHA) and ectoine relevant genes from Halomonas sp. TD01 revealed extensive horizontal gene transfer events and co-evolutionary relationships

    Get PDF
    BACKGROUND: Halophilic bacteria have shown their significance in industrial production of polyhydroxyalkanoates (PHA) and are gaining more attention for genetic engineering modification. Yet, little information on the genomics and PHA related genes from halophilic bacteria have been disclosed so far. RESULTS: The draft genome of moderately halophilic bacterium, Halomonas sp. TD01, a strain of great potential for industrial production of short-chain-length polyhydroxyalkanoates (PHA), was analyzed through computational methods to reveal the osmoregulation mechanism and the evolutionary relationship of the enzymes relevant to PHA and ectoine syntheses. Genes involved in the metabolism of PHA and osmolytes were annotated and studied in silico. Although PHA synthase, depolymerase, regulator/repressor and phasin were all involved in PHA metabolic pathways, they demonstrated different horizontal gene transfer (HGT) events between the genomes of different strains. In contrast, co-occurrence of ectoine genes in the same genome was more frequently observed, and ectoine genes were more likely under coincidental horizontal gene transfer than PHA related genes. In addition, the adjacent organization of the homologues of PHA synthase phaC1 and PHA granule binding protein phaP was conserved in the strain TD01, which was also observed in some halophiles and non-halophiles exclusively from γ-proteobacteria. In contrast to haloarchaea, the proteome of Halomonas sp. TD01 did not show obvious inclination towards acidity relative to non-halophilic Escherichia coli MG1655, which signified that Halomonas sp. TD01 preferred the accumulation of organic osmolytes to ions in order to balance the intracellular osmotic pressure with the environment. CONCLUSIONS: The accessibility of genome information would facilitate research on the genetic engineering of halophilic bacteria including Halomonas sp. TD01

    Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters

    Get PDF
    Spatial modes have received substantial attention over the last decades and are used in optical communication applications. In fiber-optic communications, the employed linearly polarized modes and phase vortex modes carrying orbital angular momentum can be synthesized by fiber vector eigenmodes. To improve the transmission capacity and miniaturize the communication system, straightforward fiber vector eigenmode multiplexing and generation of fiber-eigenmode-like polarization vortices (vector vortex modes) using photonic integrated devices are of substantial interest. Here, we propose and demonstrate direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. By exploiting vector vortex modes (radially and azimuthally polarized beams) generated from silicon microring resonators etched with angular gratings, we report data-carrying fiber vector eigenmode multiplexing transmission through a 2-km large-core fiber, showing low-level mode crosstalk and favorable link performance. These demonstrations may open up added capacity scaling opportunities by directly accessing multiple vector eigenmodes in the fiber and provide compact solutions to replace bulky diffractive optical elements for generating various optical vector beams

    catena-Poly[[(2-amino-1,3-benzothia­zole-6-carboxyl­ato-κ2 O,O′)(2,2′-bipyridyl-κ2 N,N′)cadmium]-μ-2-amino-1,3-benzothia­zole-6-carboxyl­ato-κ3 N 1:O,O′]

    Get PDF
    In the title coordination polymer, [Cd(C8H5N2O2S)2(C10H8N2)]n, the CdII ion is coordinated by a bidentate 2,2-bipyridyl ligand, two O,O′-chelating 2-amino-1,3-benzothia­zole-6-carboxyl­ate (ABTC) ligands and one N-bonded ABTC ligand. The resulting CdN3O4 coordination polyhedron approximates to a very distorted penta­gonal bipramid with one O and one N atom in axial positions. One of the ABTC ligands is bridging to an adjacent metal atom, generating an infinite chain propagating in [100]. A three-dimensional network is constructed from N—H⋯O and N—H⋯N hydrogen bonds and aromatic π–π stacking inter­actions [centroid–centroid separations = 3.641 (2) and 3.682 (3) Å]
    corecore