Open Access

Pan-Dong Mao, Ling-Ling Yan, Wei-Na Wu* and Hong-Xin Cai

N'-(5-ethoxycarbonyl-3,4-dimethyl-pyrrol-2-ylmethylidene)-4-hydroxybenzohydrazide monohydrate, C₁₇H₂₁N₃O₅

DOI 10.1515/ncrs-2017-0057 Received February 27, 2017; accepted August 15, 2017; available online September 13, 2017

Abstract

C₁₇H₂₁N₃O₅, monoclinic, $P2_1/n$ (no. 14), a = 9.2278(16) Å, b = 15.093(3) Å, c = 12.698(2) Å, $\beta = 105.195(12)^{\circ}$, V = 1706.7(5) Å³, Z = 4, $R_{gt}(F) = 0.0553$, $wR_{ref}(F^2) = 0.1662$, T = 296 K.

CCDC no.: 1569105

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Source of materials

N'-(5-ethoxycarbonyl-3,4-dimethyl-pyrrol-2-yl-methylidene)-4-hydroxybenzohydrazide was prepared according to the

*Corresponding author: Wei-Na Wu, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China, e-mail: wuwn08@hpu.edu.cn Pan-Dong Mao: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China Ling-Ling Yan and Hong-Xin Cai: School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China Table 1: Data collection and handling.

Crystal:	Yellow block
Size:	$0.21\times0.19\times0.15~\text{mm}$
Wavelength:	Mo <i>Kα</i> radiation (0.71073 Å)
μ:	1.0 cm ⁻¹
Diffractometer, scan mode:	Bruker APEX-II, $arphi$ and ω
$2\theta_{max}$, completeness:	50°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	12944, 3000, 0.046
Criterion for I _{obs} , N(hkl)gt:	$l_{ m obs}$ $>$ 2 $\sigma(l_{ m obs})$, 2016
N(param) _{refined} :	253
Programs:	SHELXL [1], Bruker programs [2]

Table 2: Fractional atomic coordinates and isotropic or equivalent

 isotropic displacement parameters (Å²).

Atom	x	у	Z	U _{iso} */U _{eq}
N2	0.6348(2)	0.02933(14)	0.93676(16)	0.0445(5)
N1	0.8876(2)	-0.06095(13)	1.05922(16)	0.0426(5)
H1A	0.8379	-0.0924	1.0052	0.051*
N3	0.5149(2)	0.07672(14)	0.87624(16)	0.0463(6)
H3A	0.5003	0.1306	0.8929	0.056*
03	0.4397(2)	-0.04019(14)	0.76629(16)	0.0633(6)
C12	0.2949(3)	0.09113(17)	0.72426(19)	0.0418(6)
04	-0.0472(2)	0.23575(14)	0.51712(15)	0.0651(6)
H4A	-0.0879	0.2690	0.5517	0.098*
C10	0.7236(3)	0.06866(17)	1.0172(2)	0.0426(6)
H10A	0.7049	0.1269	1.0337	0.051*
C14	0.1387(3)	0.22183(18)	0.6892(2)	0.0472(7)
H14A	0.1123	0.2767	0.7120	0.057*
C16	0.1013(3)	0.1067(2)	0.5556(2)	0.0547(7)
H16A	0.0500	0.0840	0.4881	0.066*
C15	0.0637(3)	0.18871(19)	0.5880(2)	0.0465(6)
05	0.6797(2)	-0.15668(13)	0.87010(16)	0.0598(6)
C11	0.4201(3)	0.03682(18)	0.7897(2)	0.0443(6)
C13	0.2526(3)	0.17317(17)	0.7559(2)	0.0442(6)
H13A	0.3025	0.1958	0.8239	0.053*
C7	0.8525(3)	0.02272(16)	1.08231(19)	0.0402(6)
C4	1.0142(3)	-0.08758(18)	1.1352(2)	0.0442(6)
02	1.1826(3)	-0.20519(16)	1.2033(2)	0.0844(7)
C6	0.9603(3)	0.05104(17)	1.1745(2)	0.0435(6)
C17	0.2150(3)	0.05843(19)	0.6233(2)	0.0519(7)
H17A	0.2388	0.0028	0.6010	0.062*
C5	1.0615(3)	-0.01860(18)	1.2083(2)	0.0439(6)
C9	0.9659(4)	0.1397(2)	1.2290(3)	0.0688(9)

© 2017 Pan-Dong Mao et al., published by De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Table 2 (continued)

Atom	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
H9A	1.0513	0.1419	1.2913	0.103*
H9B	0.8758	0.1483	1.2520	0.103*
H9C	0.9743	0.1855	1.1784	0.103*
01	1.0057(3)	-0.21960(15)	1.0479(2)	0.0994(9)
С3	1.0783(4)	-0.1743(2)	1.1351(3)	0.0621(8)
C8	1.1961(3)	-0.0185(2)	1.3039(2)	0.0631(8)
H8A	1.2039	0.0377	1.3403	0.095*
H8B	1.2847	-0.0285	1.2793	0.095*
H8C	1.1865	-0.0647	1.3536	0.095*
C1 ^a	0.9520(14)	-0.3628(9)	1.0424(15)	0.110(5)
H1B ^a	0.9868	-0.3626	1.1206	0.165*
H1C ^a	0.9545	-0.4221	1.0158	0.165*
H1D ^a	0.8509	-0.3407	1.0207	0.165*
C1A ^b	0.9574(12)	-0.3590(6)	0.9697(12)	0.090(4)
H1A1 ^b	0.8638	-0.3672	0.9881	0.135*
H1A2 ^b	0.9984	-0.4157	0.9589	0.135*
H1A3 ^b	0.9408	-0.3248	0.9038	0.135*
C2A ^b	1.0609(13)	-0.3130(5)	1.0569(11)	0.079(4)
H2A1 ^b	1.1622	-0.3160	1.0483	0.095*
H2A2 [♭]	1.0602	-0.3381	1.1271	0.095*
C2 ^a	1.050(2)	-0.3054(8)	0.9965(16)	0.118(7)
H2A ^a	1.0216	-0.3042	0.9173	0.141*
H2B ^a	1.1559	-0.3199	1.0236	0.141*
H5B	0.685(6)	-0.188(3)	0.815(3)	0.177*
H5A	0.626(5)	-0.111(2)	0.845(4)	0.177*

^aOccupancy: 0.464(18); ^bOccupancy: 0.536(18).

literature method [3]. The title crystals were obtained by slow evaporating of a THF/H₂O (1:1, v:v) solution at room temperature.

Experimental details

All H atoms were situated into idealized positions with the carrier atom-H distances = 0.93 Å for aryl, 0.96 Å for the methyl and 0.86 Å for the secondary amine H atoms. The $U_{\rm iso}$ values were constrained to be $1.5U_{\rm eq}$ of the carrier atom for the methyl H atoms and $1.2U_{\rm eq}$ for the remaining H atoms. Difference Fourier maps indicate methyl H atoms disorder, which has not been modelled.

Comment

Acylhydrazones are an important class of ligands in coordination chemistry and have found extensive application

in different fields [4]. Our previous work shows that acylhydrazone ligands bearing pyrrole units and their Cu(II) complexes exhibit considerable antibacterial and antitumor activity [3, 5, 6]. The structure of N'-(5-ethoxycarbonyl-3,4-dimethyl-pyrrol-2-yl-methylidene)-4-hydroxybenzohydrazide DMF adduct has been reported [3], while its monohydrate was characterized by X-ray diffraction in this work.

In the title crystal structure, the acylhydrazone molecule is in a ketone form and adopts an E configuration at the C = N double bond, in which all the bond lengths are comparable with those observed in the DMF adduct [6]. The dihedral angle between the pyrrole (N1/C4–C7, r.m.s. deviation 0.0034 Å) and the phenyl rings (C12–C17, r.m.s. deviation 0.0070 Å) is 10.7°. The torsion angles of N3–N2–C10–C7 and C11–N3–N2–C10 are 179.3(2)° and –178.95(19)°, respectively. In the solid state, the acylhydrazone molecules are linked into a two-dimensional supermolecular network by the crystal water molecules *via* intermolecular N–H···O and O–H···O hydrogen bonds.

References

- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- 2. Bruker. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, (2012).
- Ye, X.-P.; Zhu, T.-F.; Wu, W.-N.; Ma, T.-L.; Xu, J.; Zhang, Z.-P.; Wang, Y.; Jia, L.: Syntheses, characterizations and biological activities of two Cu(II) complexes with acylhydrazone ligand bearing pyrrole unit. Inorg. Chem. Commun. 47 (2014) 60–62.
- Dong, W.-K.; Li, X.-L.; Wang, L.; Zhang, Y.; Ding, Y.-J.: A new application of salamo-type bisoximes: As a relay-sensor for Zn²⁺/Cu²⁺ and its novel complexes for successive sensing of H⁺/OH⁻. Sens. Actuators B229 (2016) 370–378.
- Han, X.-F.; Cai, H.-X.; Jia, L.; Wu, W.-N.; Zhang, X.; Xu, J.; Zhang, Z.-P.; Wang, Y.: Syntheses, characterizations and antitumor activities of two copper(II) complexes with an acylhydrazone ligand bearing Pyrrole Unit. Chin. Inorg. Chem. Commun. **31** (2015) 1453–1459.
- Ye, X.-P.; Wang, G.-J.; Pan, P.; Zhang, Z.-P.; Wu, W.-N.; Wang, Y.: Syntheses, crystal structures and biological activities of two Cu(II) complexes with an acylhydrazone ligand bearing pyrrole unit. Chin. Inorg. Chem. Commun. **30** (2014) 2789–2795.