2,547 research outputs found

    Bridge helix bending promotes RNA polymerase II backtracking through a critical and conserved threonine residue.

    Get PDF
    The dynamics of the RNA polymerase II (Pol II) backtracking process is poorly understood. We built a Markov State Model from extensive molecular dynamics simulations to identify metastable intermediate states and the dynamics of backtracking at atomistic detail. Our results reveal that Pol II backtracking occurs in a stepwise mode where two intermediate states are involved. We find that the continuous bending motion of the Bridge helix (BH) serves as a critical checkpoint, using the highly conserved BH residue T831 as a sensing probe for the 3'-terminal base paring of RNA:DNA hybrid. If the base pair is mismatched, BH bending can promote the RNA 3'-end nucleotide into a frayed state that further leads to the backtracked state. These computational observations are validated by site-directed mutagenesis and transcript cleavage assays, and provide insights into the key factors that regulate the preferences of the backward translocation

    Pulse control of sudden transition for two qubits in XY spin baths and quantum phase transition

    Full text link
    We study the dynamics of two initially correlated qubits coupled to their own separate spin baths modeled by a XY spin chain and find the explicit expression of the quantum discord for the system. A sudden transition is found to exist between classical and quantum decoherence by choosing certain initial states. We show that the sudden transition happens near the critical point, which provides a new way to characterize the quantum phase transition. Furthermore, we propose a scheme to prolong the transition time of the quantum discord by applying the bang-bang pulses.Comment: 5 pages, 6 figure

    Identification of the CFTR c.1666A \u3e G mutation in hereditary inclusion body myopathy using next-generation sequencing analysis

    Get PDF
    Hereditary inclusion body myopathy (HIBM) is a rare autosomal recessive adult onset muscle disease which affects one to three individuals per million worldwide. This disease is autosomal dominant and occurs in adulthood. Our previous study reported a new subtype of HIBM linked to the susceptibility locus at 7q22.1-31.1. The present study is aimed to identify the candidate gene responsible for the phenotype in HIBM pedigree. After multipoint linkage analysis, we performed targeted capture sequencing on 16 members and whole-exome sequencing (WES) on 5 members. Bioinformatics filtering was performed to prioritize the candidate pathogenic gene variants, which were further genotyped by Sanger sequencing. Our results showed that the highest peak of LOD score (4.70) was on chromosome 7q22.1-31.1.We identified 2 and 22 candidates using targeted capture sequencing and WES respectively, only one of which as CFTRc.1666A \u3e G mutation was well cosegregated with the HIBM phenotype. Using transcriptome analysis, we did not detect the differences of CFTR\u27s mRNA expression in the proband compared with healthy members. Due to low incidence of HIBM and there is no other pedigree to assess, mutation was detected in three patients with duchenne muscular dystrophyn (DMD) and five patients with limb-girdle muscular dystrophy (LGMD). And we found that the frequency of mutation detected in DMD and LGMD patients was higher than that of being expected in normal population. We suggested that the CFTRc.1666A \u3e G may be a candidate marker which has strong genetic linkage with the causative gene in the HIBM famil

    Multi-target siRNA based on DNMT3A/B homologous conserved region influences cell cycle and apoptosis of human prostate cancer cell line TSU-PR1

    Get PDF
    Abnormal genome hypermethylation participates in the tumorigenesis and development of prostate cancer. Prostate cancer cells highly express DNA methyltransferase 3 (DMNT3) family genes, essential for maintaining genome methylation. In the present study, multi-target siRNA, based on the homologous region of the DNMT3 family, was designed for the in vitro investigation of its effects on the proliferation, migration, and invasion of TSU-PR1 prostate cancer cells. The consequential cell-cycle derangement, through DNMT3A/B or only DNMT3B silencing, was partially efficient, without affecting apoptosis. DNMT3A silencing had absolutely no effect on changing TSU-PR1 cell biological behavior. Hence, DNMT3B alone apparently plays a key role in maintaining the unfavorable behavior of prostate-cancer cells, thereby implying its potential significance as a promising therapeutic target, with DNMT3A simply in the role of helper

    A data analysis method for isochronous mass spectrometry using two time-of-flight detectors at CSRe

    Full text link
    The concept of isochronous mass spectrometry (IMS) applying two time-of-flight (TOF) detectors originated many years ago at GSI. However, the corresponding method for data analysis has never been discussed in detail. Recently, two TOF detectors have been installed at CSRe and the new working mode of the ring is under test. In this paper, a data analysis method for this mode is introduced and tested with a series of simulations. The results show that the new IMS method can significantly improve mass resolving power via the additional velocity information of stored ions. This improvement is especially important for nuclides with Lorentz factor Îł\gamma-value far away from the transition point Îłt\gamma _t of the storage ring CSRe.Comment: published in Chinese Physics C Vol. 39, No. 10 (2015) 10620
    • …
    corecore