20 research outputs found

    Discovery of Markers of Exposure Specific to Bites of Lutzomyia longipalpis, the Vector of Leishmania infantum chagasi in Latin America

    Get PDF
    Leishmania parasites are transmitted by the bite of an infected vector sand fly that injects salivary molecules into the host skin during feeding. Certain salivary molecules can produce antibodies and can be used as an indicator of exposure to a vector sand fly and potentially the disease it transmits. Here we identified potential markers of specific exposure to the sand fly Lutzomyia longipalpis, the vector of visceral leishmaniasis in Latin America. Initially, we determined which of the salivary proteins produce antibodies in humans, dogs, and foxes from areas endemic for the disease. To identify potential specific markers of vector exposure, we produced nine different recombinant salivary proteins from Lu. longipalpis and tested for their recognition by individuals exposed to another human-biting sand fly, Lu. intermedia, that transmits cutaneous leishmaniasis and commonly occurs in the same endemic areas as Lu. longipalpis. Two of the nine salivary proteins were recognized only by humans exposed to Lu. longipalpis, suggesting they are immunogenic proteins and may be useful in epidemiological studies. The identification of specific salivary proteins as potential markers of exposure to vector sand flies will increase our understanding of vector–human interaction, bring new insights to vector control, and in some instances act as an indicator for risk of acquiring disease

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Total above-ground biomass and biomass in commercial logs following the harvest of spotted gum (Corymbia maculata) forests of SE NSW

    No full text
    Total stand above-ground biomass (AGB) was measured at three sites of varying productivity in the Batemans Bay region of NSW. All trees with diameter at breast height (dbh) > 10 cm on three plots of 0.4-0.6 ha were weighed. Spotted gum was the dominant tree species across all sites. The basal area ranged from 29 to 43 m2 ha-1 depending on site quality. The total dry AGB was 220, 287 and 397 t ha-1 for the low, medium and high-quality sites (LQS, MQS and HQS), respectively. Spotted gum accounted for 66-79% of the AGB. The proportion of AGB in larger trees (dbh > 50 cm) increased significantly with increased site quality. Bark accounted for about 7% of the weight of all spotted gum logs. The only significant differences in the proportion of bark in the logs were between trees with dbh > 70 cm and those with dbh 30 cm in diameter (particularly at the low-quality site), and the variance of AGB increased with tree size. The fraction of biomass in all spotted gum commercial logs was 58.2%. The biomass in commercial logs at the MQS was significantly greater than that at both the LQS and the HQS. An average 0.8 t of residues was generated per tree as a result of selective harvesting of commercial spotted gum forests. The largest fraction of biomass in commercial spotted gum logs (64.1%) was found in large trees (55-65 cm dbh), although the only significant differences were between trees with dbh between 35 and 40 cm and those with dbh between 55 and 65 cm. Pulp logs accounted for 55% of the AGB harvested in spotted gum commercial logs. The proportion of higher-quality commercial logs increased with increased site quality

    The decomposition of wood products in landfills in Sydney, Australia

    No full text
    Three landfill sites that had been closed for 19, 29 and 46 years and had been operated under different management systems were excavated in Sydney. The mean moisture content of the wood samples ranged from 41.6% to 66.8%. The wood products recovered were identified to species, and their carbon, cellulose, hemicellulose and lignin concentration were determined and compared to those of matched samples of the same species. No significant loss of dry mass was measured in wood products buried for 19 and 29 years, but where refuse had been buried for 46 years, the measured loss of carbon (as a percentage of dry biomass) was 8.7% for hardwoods and 9.1% for softwoods, equating to 18% and 17% of their original carbon content, respectively. The results indicate that published decomposition factors based on laboratory research significantly overestimate the decomposition of wood products in landfill

    The decay of engineered wood products and paper excavated from landfills in Australia

    No full text
    Large volumes of engineered wood products (EWPs) and paper are routinely placed in landfills in Australia, where they are assumed to decay. However, the extent of decay for EWPs is not well-known. This study reports carbon loss from EWPs and paper buried in landfills in Sydney, Brisbane and Cairns in Australia, located in temperate, subtropical and tropical climates, respectively. The influence of pulp type (mechanical and chemical) and landfill type (municipal solid waste – MSW and construction and demolition – C&D) on decay levels were investigated. Carbon loss for EWPs ranged from 0.6 to 9.0%" though there is some uncertainty in these values due to limitations associated with sourcing appropriate controls. Carbon loss for paper products ranged from 0 to 58.9%. Papers produced from predominantly mechanical pulps generally had lower levels of decay than those produced via chemical or partly chemical processes. Typically, decay levels for paper products were highest for the tropical Cairns landfill, suggesting that climate may be a significant factor to be considered when estimating emissions from paper in landfills. For EWPs, regardless of the landfill type and climate, carbon losses were low, confirming results from previous laboratory studies. Lower carbon losses were observed for EWP and paper excavated from the Sydney C&D landfill, compared with the Sydney MSW landfill, confirming the hypothesis that conditions in C&D landfills are less favourable for decay. These results have implications for greenhouse gas inventory estimations, as carbon losses for EWPs were lower than the commonly assumed values of 23% (US EPA) and 50% (Intergovernmental Panel on Climate Change). For paper types, we suggest that separate decay factors should be used for papers dominated by mechanical pulp and those produced from mostly chemical pulps, and also for papers buried in tropical or more temperate climates

    Carbon dynamics of paper, engineered wood products and bamboo in landfills: evidence from reactor studies

    No full text
    Background: There has been growing interest in the development of waste-specifc decay factors for estimation of greenhouse gas emissions from landflls in national greenhouse gas inventories. Although engineered wood products (EWPs) and paper represent a substantial component of the solid waste stream, there is limited information available on their carbon dynamics in landflls. The objective of this study was to determine the extent of carbon loss for EWPs and paper products commonly used in Australia. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfll. Results: Methane generation rates over incubations of 307–677 days ranged from zero for medium-density fbreboard (MDF) to 326 mL CH4 g−1 for copy paper. Carbon losses for particleboard and MDF ranged from 0.7 to 1.6%, consistent with previous estimates. Carbon loss for the exterior wall panel product (2.8%) was consistent with the expected value for blackbutt, the main wood type used in its manufacture. Carbon loss for bamboo (11.4%) was signifcantly higher than for EWPs. Carbon losses for the three types of copy paper tested ranged from 72.4 to 82.5%, and were signifcantly higher than for cardboard (27.3–43.8%). Cardboard that had been buried in landfll for 20 years had a carbon loss of 27.3%—indicating that environmental conditions in the landfll did not support complete decomposition of the available carbon. Thus carbon losses for paper products as measured in bioreactors clearly overestimate those in actual landflls. Carbon losses, as estimated by gas generation, were on average lower than those derived by mass balance. The low carbon loss for particleboard and MDF is consistent with carbon loss for Australian wood types described in previous studies. A factor for carbon loss for combined EWPs and wood in landfills in Australia of 1.3% and for paper of 48% is proposed. Conclusions: The new suggested combined decay factor for wood and EWPs represents a significant reduction from the current factor used in the Australian greenhouse gas inventory" whereas the suggested decay factor for paper is similar to the current decay factor. Our results improve current understanding of the carbon dynamics of harvested wood products, and allow more refined estimates of methane emissions from landfills

    Carbon dynamics of paper, engineered wood products and bamboo in landfills: evidence from reactor studies

    No full text
    Abstract Background There has been growing interest in the development of waste-specific decay factors for estimation of greenhouse gas emissions from landfills in national greenhouse gas inventories. Although engineered wood products (EWPs) and paper represent a substantial component of the solid waste stream, there is limited information available on their carbon dynamics in landfills. The objective of this study was to determine the extent of carbon loss for EWPs and paper products commonly used in Australia. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Results Methane generation rates over incubations of 307–677 days ranged from zero for medium-density fibreboard (MDF) to 326 mL CH4 g−1 for copy paper. Carbon losses for particleboard and MDF ranged from 0.7 to 1.6%, consistent with previous estimates. Carbon loss for the exterior wall panel product (2.8%) was consistent with the expected value for blackbutt, the main wood type used in its manufacture. Carbon loss for bamboo (11.4%) was significantly higher than for EWPs. Carbon losses for the three types of copy paper tested ranged from 72.4 to 82.5%, and were significantly higher than for cardboard (27.3–43.8%). Cardboard that had been buried in landfill for 20 years had a carbon loss of 27.3%—indicating that environmental conditions in the landfill did not support complete decomposition of the available carbon. Thus carbon losses for paper products as measured in bioreactors clearly overestimate those in actual landfills. Carbon losses, as estimated by gas generation, were on average lower than those derived by mass balance. The low carbon loss for particleboard and MDF is consistent with carbon loss for Australian wood types described in previous studies. A factor for carbon loss for combined EWPs and wood in landfills in Australia of 1.3% and for paper of 48% is proposed. Conclusions The new suggested combined decay factor for wood and EWPs represents a significant reduction from the current factor used in the Australian greenhouse gas inventory; whereas the suggested decay factor for paper is similar to the current decay factor. Our results improve current understanding of the carbon dynamics of harvested wood products, and allow more refined estimates of methane emissions from landfills

    Improving understanding of carbon storage in wood in landfills: Evidence from reactor studies

    No full text
    Approximately 1.5 million tonnes (Mt) of wood waste are disposed of in Australian landfills annually. Recent studies have suggested that anaerobic decay levels of wood in landfills are low, although knowledge of the decay of individual wood species is limited. The objective of this study was to establish the extent of carbon loss for wood species of commercial importance in Australia including radiata pine, blackbutt, spotted gum and mountain ash. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Bacterial degradation, identified by both light microscopy and electron microscopy, occurred to a varying degree in mountain ash and spotted gum wood. Fungal decay was not observed in any wood samples. Mountain ash, the species with the highest methane yield (20.9 mL CH4/g) also had the highest holocellulose content and the lowest acid-insoluble lignin and extractive content. As the decay levels for untreated radiata pine were very low, it was not possible to determine whether impregnation of radiata pine with chemical preservatives had any impact on decay. Carbon losses estimated from gas generation were below 5% for all species tested. Carbon losses as estimated by gas generation were lower than those derived by mass balance in most reactors, suggesting that mass loss does not necessarily equate to carbon emissions. There was no statistical difference between decay of blackbutt derived from plantation and older, natural forests. Addition of paper as an easily digestible feedstock did not increase carbon loss for the two wood species tested and the presence of radiata pine had an inhibitory effect on copy paper decay. Although differences between some of the wood types were found to be statistically significant, these differences were detected for wood with carbon losses that did not exceed 5%. The suggested factor for carbon loss for wood in landfills in Australia is 1.4%. This study confirms that disposal of wood in landfills in Australia results in long-term storage of carbon, with only minimal conversion of carbon to gaseous end products

    Developing a carbon stocks and flows model for Australian wood products

    No full text
    This paper describes the development of a model for estimating Australia's stocks and flows of carbon in harvested wood products, including estimates of atmospheric emissions. The model estimates emissions in various forms, including those from wood products contained in Australia, encompassing both domestically produced (net of exports) and imported wood products. This estimate is the basis of Australia's National Greenhouse Gas Inventory report on wood products. The model can also estimate emissions from all (and only) wood products produced in Australia, and a third variant that presumes emissions from wood products at the time of harvest. The model represents a collaborative effort, involving relevant Commonwealth and state government agencies, industry groups and research bodies. The model uses available statistics on log flows from forest harvest and estimates of the carbon content of the various wood products processed (for example, sawn timber, plywood, pulp and paper and woodchips) to determine carbon inputs to wood products. The model uses estimates of the decay period of various classes of wood product to calculate the pool of carbon in wood products. Crosschecking with independent input data was done wherever possible to test the robustness of various input data used in the model development. The model is built in Microsoft Excel with all rate and age parameters easily accessed and varied for sensitivity testing using the @Risk software. Wood products in use are assigned to young-, medium- and old-age pools. Simulated losses of wood products from their service life occur from each of the young-, medium-and old-age pools. Material leaving service is either transferred to bioenergy, added to landfill, recycled or emitted to the atmosphere. Losses of carbon can also occur from the landfill pool. The recorded imports and exports of wood products are used to calculate emissions under two approaches. The first is from wood products produced in Australia (but not necessarily remaining within Australia), and the second from wood products stored in Australia (wherever they were produced). Further simulations, with and without consideration of storage and emissions from landfill, are then run for each approach. The results show that an accounting approach that presumes emissions from wood products at harvest over-estimates emissions to the atmosphere when compared with approaches that consider the service life of wood products. The storage of wood products in landfill is also significant

    Aboveground forest carbon shows different responses to fire frequency in harvested and unharvested forests

    No full text
    Sequestration of carbon in forest ecosystems has been identified as an effective strategy to help mitigate the effects of global climate change. Prescribed burning and timber harvesting are two common, co-occurring, forest management practices that may alter forest carbon pools. Prescribed burning for forest management, such as wildfire risk reduction, may shorten inter-fire intervals and potentially reduce carbon stocks. Timber harvesting may further increase the susceptibility of forest carbon to losses in response to frequent burning regimes by redistributing carbon stocks from the live pools into the dead pools, causing mechanical damage to retained trees and shifting the demography of tree communities. We used a 27-yr experiment in a temperate eucalypt forest to examine the effect of prescribed burning frequency and timber harvesting on aboveground carbon (AGC). Total AGC was reduced by ~23% on harvested plots when fire frequency increased from zero to seven fires, but was not affected by fire frequency on unharvested plots. The reduction in total AGC associated with increasing fire frequency on harvested plots was driven by declines in large coarse woody debris (≄10 cm diameter) and large trees (≄20 cm diameter). Small tree (<20 cm DBH) AGC increased with fire frequency on harvested plots, but decreased on unharvested plots. Carbon in dead standing trees decreased with increasing fire frequency on unharvested plots, but was unaffected on harvested plots. Small coarse woody debris (<10 cm diameter) was largely unaffected by fire frequency and harvesting. Total AGC on harvested plots was between 67% and 82% of that on unharvested plots, depending on burning treatment. Our results suggest that AGC in historically harvested forests may be susceptible to declines in response to increases in prescribed burning frequency. Consideration of historic harvesting will be important in understanding the effect of prescribed burning programs on forest carbon budgets
    corecore