43 research outputs found

    Adaptive changes in sexual signalling in response to urbanization

    Get PDF
    Urbanization can cause species to adjust their sexual displays, because the effectiveness of mating signals is influenced by environmental conditions. Despite many examples that show that mating signals in urban conditions differ from those in rural conditions, we do not know whether these differences provide a combined reproductive and survival benefit to the urban phenotype. Here we show that male tĂșngara frogs have increased the conspicuousness of their calls, which is under strong sexual and natural selection by signal receivers, as an adaptive response to city life. The urban phenotype consequently attracts more females than the forest phenotype, while avoiding the costs that are imposed by eavesdropping bats and midges, which we show are rare in urban areas. Finally, we show in a translocation experiment that urban frogs can reduce risk of predation and parasitism when moved to the forest, but that forest frogs do not increase their sexual attractiveness when moved to the city. Our findings thus reveal that urbanization can rapidly drive adaptive signal change via changes in both natural and sexual selection pressures

    Metabolomics-guided insights on bariatric surgery versus behavioral interventions for weight loss.

    Full text link
    Despite evidence to support their utility, lifestyle-based strategies for weight loss and treatment of obesity (i.e., based on diet and physical activity) have met so far with little success in the long term in terms of permanent weight loss (1). Bariatric surgery is the only current treatment for obesity leading to sustained weight loss (2) and to improvements in glucose regulation, up to a complet

    Sexual differences in prevalence of a new species of trypanosome infecting tĂșngara frogs

    No full text
    Trypanosomes are a diverse group of protozoan parasites of vertebrates transmitted by a variety of hematophagous invertebrate vectors. Anuran trypanosomes and their vectors have received relatively little attention even though these parasites have been reported from frog and toad species worldwide. Blood samples collected from tĂșngara frogs (Engystomops pustulosus), a Neotropical anuran species heavily preyed upon by eavesdropping frog-biting midges (Corethrella spp.), were examined for trypanosomes. Our results revealed sexual differences in trypanosome prevalence with female frogs being rarely infected (<1%). This finding suggests this protozoan parasite may be transmitted by frog-biting midges that find their host using the mating calls produced by male frogs. Following previous anuran trypanosome studies, we examined 18S ribosomal RNA gene to characterize and establish the phylogenetic relationship of the trypanosome species found in tĂșngara frogs. A new species of giant trypanosome, Trypanosoma tungarae n. sp., is described in this study. Overall the morphometric data revealed that the trypomastigotes of T. tungarae n. sp. are similar to other giant trypanosomes such as Trypanosoma rotatorium and Trypanosoma ranarum. Despite its slender and long cell shape, however, 18S rRNA gene sequences revealed that T. tungarae n. sp. is sister to the rounded-bodied giant trypanosome, Trypanosoma chattoni. Therefore, morphological convergence explains similar morphology among members of two non-closely related groups of trypanosomes infecting frogs. The results from this study underscore the value of coupling morphological identification with molecular characterization of anuran trypanosomes

    Data from: Anuran predators overcome visual illusion: dazzle coloration does not protect moving prey

    No full text
    Predators everywhere impose strong selection pressures on the morphology and behavior of their prey, but the resulting antipredator adaptations vary greatly among species. Studies of adaptive coloration in prey species have generally focused on cryptic or aposematic prey, with little consideration of color patterns in palatable mobile prey. Complex color patterns have been proposed to decrease the ability of visual predators to capture moving prey (motion dazzle effect). Most support for this hypothesis, however, comes from experiments with human subjects and simulated prey. We tested the motion dazzle effect using, for the first time, natural predators (cane toads, Rhinella marina) and live prey (house crickets, Acheta domesticus) with altered color patterns. We found no support for the motion dazzle effect as striped crickets did not fare better than solid colored ones. Crickets that spent more time moving, however, were more likely to be eaten. Our results suggest that motion specialized visual predators such as toads overcome the motion dazzle effect and impose stronger selection pressure on prey behavior than on coloration. These findings emphasize the importance of sensory specializations of predators in mediating antipredator strategies

    TĂșngara frogs

    No full text

    Danger comes from all fronts : predator-dependent escape tactics of tungara frogs

    No full text
    The escape response of an organism is generally its last line of defense against a predator. Because the effectiveness of an escape varies with the approach behaviour of the predator, it should be advantageous for prey to alter their escape trajectories depending on the mode of predator attack. To test this hypothesis we examined the escape responses of a single prey species, the ground-dwelling tĂșngara frog (Engystomops pustulosus), to disparate predators approaching from different spatial planes: a terrestrial predator (snake) and an aerial predator (bat). TĂșngara frogs showed consistently distinct escape responses when attacked by terrestrial versus aerial predators. The frogs fled away from the snake models (Median: 131°). In stark contrast, the frogs moved toward the bat models (Median: 27°); effectively undercutting the bat’s flight path. Our results reveal that prey escape trajectories reflect the specificity of their predators’ attacks. This study emphasizes the flexibility of strategies performed by prey to outcompete predators with diverse modes of attack.12 page(s

    Task differences confound sex differences in receiver permissiveness in tĂșngara frogs

    No full text
    In many mating systems, both sexes respond to the same sexual signal. In frogs, males typically call in response to advertisement calls, while females approach male calls in choosing a mate. The costs of signal detection errors are expected to differ between the sexes. Missed opportunities are costly for males because ignoring a signal results in failing to compete with rivals for mates, while their cost for misidentification is lower (time and energy displaying to the incorrect target). By contrast, for females, the cost of misidentification is high (mating with incorrect species or low-quality partner), while their cost for missed opportunity is lower because the operational sex ratio puts females at a premium. Consequently, females should be more selective in their response to signal variation than males. We report that presumed sexual differences in selectivity in tĂșngara frogs (Physalaemus pustulosus) are task-specific rather than sex-specific. As predicted, male tĂșngara frogs are less selective in their vocal responses than are females in their phonotactic responses. Males exhibiting phonotaxis to the same calls, however, are as selective as females, and are significantly more selective than when they respond vocally to the same calls. Our study shows that apparent differences between the sexes emerge from differences in the behaviours themselves and are not intrinsic to each sex. Analogous behavioural differences might confound sex differences in other systems; thus, we suggest consideration of the behavioural plasticity of sex as well as its stereotypy

    Acoustic preferences and localization performance of blood-sucking flies (Corethrella Coquillett) to tïżœngara frog calls

    No full text
    Mating signals that increase attractiveness of males to females can also increase conspicuousness of the signaler to predators and parasites. We investigated the acoustic preference of species of blood-sucking flies of the genus Corethrella (Diptera: Corethrellidae), which eavesdrop on the sexual advertisement signals of tïżœngara frogs (Physalaemus pustulosus). Male frogs of this species facultatively produce 2 types of mating calls: simple (whines alone) and complex (whines and chucks). We tested the acoustic preference of the flies and their ability to locate their host when the frogs produce simple or complex calls. The flies exhibited phonotaxis to both types of calls but were preferentially attracted to complex calls. We show that acoustic information alone is sufficient for the flies' accurate localization of calling frogs. Complex calls, however, were not approached at closer distance or with decreased landing error (i.e., proportion of landings outside the target) than simple calls, suggesting that call structure does not influence localization performance. Female tïżœngara frogs and frog-eating bats (Trachops cirrhosus) also prefer complex to simple tïżœngara frog calls. Thus, intended and unintended receivers with different ear morphologies exhibit the same preference for a specific tïżœngara frog call type. This result is discussed in the context of the evolution of call attractiveness in a communication network. Copyright 2006.acoustic communication; communication network; host--parasite interaction; sound localization
    corecore