199 research outputs found

    Actuation system modelling and design optimization for an assistive exoskeleton for disabled and elderly with series and parallel elasticity

    Get PDF
    BACKGROUND: The aim of a robotic exoskeleton is to match the torque and angular profile of a healthy human subject in performing activities of daily living. Power and mass are the main requirements considered in the robotic exoskeletons that need to be reduced so that portable designs to perform independent activities by the elderly users could be adopted. OBJECTIVE: This paper evaluates a systematic approach for the design optimization strategies of elastic elements and implements an actuator design solution for an ideal combination of components of an elastic actuation system while providing the same level of support to the elderly. METHODS: A multi-factor optimization technique was used to determine the optimum stiffness and engagement angle of the spring within its elastic limits at the hip, knee and ankle joints. An actuator design framework was developed for the elderly users to match the torque-angle characteristics of the healthy human with the best motor and transmission system combined with series or parallel elasticity in an elastic actuator. RESULTS: With the optimized spring stiffness, a parallel elastic element significantly reduced the torque and power requirements up to 90% for some manoeuvres for the users to perform ADL. When compared with the rigid actuation system, the optimized robotic exoskeleton actuation system reduced the power consumption of up to 52% using elastic elements. CONCLUSION: A lightweight, smaller design of an elastic actuation system consuming less power as compared to a rigid system was realized using this approach. This will help to reduce the battery size and hence the portability of the system could be better adopted to support elderly users in performing daily living activities. It was established that parallel elastic actuators (PEA) can reduce the torque and power better than series elastic actuators (SEA) in performing everyday tasks for the elderly

    Uncertainty Compensated High-Order Adaptive Iteration Learning Control for Robot-Assisted Upper Limb Rehabilitation

    Get PDF
    Upper limb rehabilitation robot can assist stroke patients to complete daily activities to promote the recovery of upper-limb motor functions. However, the robot uncertainty and the patient’s unconscious disturbance impose great difficulties on the high-performance trajectory tracking of the rehabilitation robot. In this paper, an uncertainty compensated high-order adaptive iterative learning controller (UCHAILC) is proposed to reduce the impact of uncertainty from inside and outside of the robot during the rehabilitation process. The nonlinear system is converted into a dynamic linearization model with uncertainty compensation, and the optimization criterion method is adopted to estimate the pseudo-partial derivative (PPD) parameters and the uncertainty respectively, then the previous iterations are used to update the current parameters through a high-order learning scheme. The convergence of UCHAILC is theoretically proved. Simulation and control experiments on a rehabilitation robot are given to validate the effectiveness of the proposed method, which is significant to improve the training security and physiotherapy effect of robot-assisted rehabilitation. Note to Practitioners —This paper was motivated by the need to assist stroke patients to restore motor function for executing daily activities. The inherent difficulties lie in reducing the tracking errors of rehabilitation robots caused by uncertainty and involuntary disturbance from patients to avoid secondary injury. The proposed UCHAILC can transform the complex nonlinear system into a dynamic linear model with uncertainty compensation, then the PPD parameters and uncertainty are estimated through high-order learning law. Theoretical analysis, simulation, and experiments verified the feasibility of the method. Furthermore, the proposed controller is not limited to the dynamic model and hardware driving mode of the robot system, which can be easily transplanted to other nonlinear control systems with uncertainties

    SSVEP-based Brain-Computer Interface Controlled Robotic Platform with Velocity Modulation

    Get PDF
    Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) have been extensively studied due to many benefits, such as non-invasiveness, high information transfer rate, and ease of use. SSVEP-based BCI has been investigated in various applications by projecting brain signals to robot control commands. However, the movement direction and speed are generally fixed and prescribed, neglecting the user’s requirement for velocity changes during practical implementations. In this study, we proposed a velocity modulation method based on stimulus brightness for controlling the robotic arm in the SSVEP-based BCI system. A stimulation interface was designed, incorporating flickers, target and a cursor workspace. The synchronization of the cursor and robotic arm does not require the subject’s eye switch between the stimuli and the robot. The feature vector consists of the characteristics of the signal and the classification result. Subsequently, the Gaussian mixture model (GMM) and Bayesian inference were used to calculate the posterior probabilities that the signal came from a high or low brightness flicker. A brain-actuated speed function was designed by incorporating the posterior probability difference. Finally, the historical velocity was considered to determine the final velocity. To demonstrate the effectiveness of the proposed method, online experiments, including single- and multi-target reaching tasks, were conducted. The extensive experimental results validated the feasibility of the proposed method in reducing reaching time and achieving proximity to the target

    Detecting latent topics and trends of digital twins in healthcare: A structural topic model-based systematic review

    Get PDF
    Objective: Digital twins (DTs) have received widespread attention recently, providing new ideas and possibilities for future healthcare. This review aims to provide a quantitative review to analyze specific study contents, research focus, and trends of DT in healthcare. Simultaneously, this review intends to expand the connotation of “healthcare” into two directions, namely “Disease treatment” and “Health enhancement” to analyze the content within the “DT+healthcare” field thoroughly. Methods: A data mining method named Structure Topic Modeling (STM) was used as the analytical tool due to its topic analysis ability and versatility. Google Scholar, Web of Science, and China National Knowledge Infrastructure supplied the material papers in this review. Results: A total of 94 high-quality papers published between 2018 and 2022 were gathered and categorized into eight topics, collectively covering the transformative impact across a broader spectrum in healthcare. Three main findings have emerged: (1) papers published in healthcare predominantly concentrate on technology development (artificial intelligence, Internet of Things, etc.) and application scenarios(personalized, precise, and real-time health service); (2) the popularity of research topics is influenced by various factors, including policies, COVID-19, and emerging technologies; and (3) the preference for topics is diverse, with a general inclination toward the attribute of “Health enhancement.” Conclusions: This review underscores the significance of real-time capability and accuracy in shaping the future of DT, where algorithms and data transmission methods assume central importance in achieving these goals. Moreover, technological advancements, such as omics and Metaverse, have opened up new possibilities for DT in healthcare. These findings contribute to the existing literature by offering quantitative insights and valuable guidance to keep researchers ahead of the curve

    Simultaneous Hip Implant Segmentation and Gruen Landmarks Detection

    Get PDF
    The assessment of implant status and complications of Total Hip Replacement (THR) relies mainly on the clinical evaluation of the X-ray images to analyse the implant and the surrounding rigid structures. Current clinical practise depends on the manual identification of important landmarks to define the implant boundary and to analyse many features in arthroplasty X-ray images, which is time-consuming and could be prone to human error. Semantic segmentation based on the Convolutional Neural Network (CNN) has demonstrated successful results in many medical segmentation tasks. However, these networks cannot define explicit properties that lead to inaccurate segmentation, especially with the limited size of image datasets. Our work integrates clinical knowledge with CNN to segment the implant and detect important features simultaneously. This is instrumental in the diagnosis of complications of arthroplasty, particularly for loose implant and implant-closed bone fractures, where the location of the fracture in relation to the implant must be accurately determined. In this work, we define the points of interest using Gruen zones that represent the interface of the implant with the surrounding bone to build a Statistical Shape Model (SSM). We propose a multitask CNN that combines regression of pose and shape parameters constructed from the SSM and semantic segmentation of the implant. This integrated approach has improved the estimation of implant shape, from 74% to 80% dice score, making segmentation realistic and allowing automatic detection of Gruen zones. To train and evaluate our method, we generated a dataset of annotated hip arthroplasty X-ray images that will be made available

    Quantitative Upper Limb Impairment Assessment for Stroke Rehabilitation: A Review

    Get PDF
    With the number of people surviving a stroke soaring, automated upper limb impairment assessment has been extensively investigated in the past decades since it lays the foundation for personalised precision rehabilitation. The recent advancement of sensor systems, such as high-precision and real-time data transmission, have made it possible to quantify the kinematic and physiological parameters of stroke patients. In this paper, we review the development of sensor-based upper limb quantitative impairment assessment, concentrating on the capable of comprehensively and accurately detecting motion parameters and measuring physiological indicators to achieve the objective and rapid quantification of the stroke severity. The paper discusses various features used by different sensors, detectable actions, their utilization techniques, and effects of sensor placement on system accuracy and stability. In addition, both the advantages and disadvantages of the model-based and model-free algorithms are also reviewed. Furthermore, challenges encompassing comprehensive assessment of medical scales, neurological deficits assessment, random movement detection, the effect of the sensor placement, and the effect of the number of sensors are also discussed

    Skyrmion Excitations in Quantum Hall Systems

    Full text link
    Using finite size calculations on the surface of a sphere we study the topological (skyrmion) excitation in quantum Hall system with spin degree of freedom at filling factors around ν=1\nu=1. In the absence of Zeeman energy, we find, in systems with one quasi-particle or one quasi-hole, the lowest energy band consists of states with L=SL=S, where LL and SS are the total orbital and spin angular momentum. These different spin states are almost degenerate in the thermodynamic limit and their symmetry-breaking ground state is the state with one skyrmion of infinite size. In the presence of Zeeman energy, the skyrmion size is determined by the interplay of the Zeeman energy and electron-electron interaction and the skyrmion shrinks to a spin texture of finite size. We have calculated the energy gap of the system at infinite wave vector limit as a function of the Zeeman energy and find there are kinks in the energy gap associated with the shrinking of the size of the skyrmion. breaking ground state is the state with one skyrmion of infinite size. In the presence of Zeeman energy, the skyrmion size is determined by the interplay of the Zeeman energy and electron-electronComment: 4 pages, 5 postscript figures available upon reques

    Evaluation of an online SSVEP-BCI with fast system setup

    Get PDF
    The brain–computer interface (BCI) plays an important role in neural restoration. Current BCI systems generally require complex experimental preparation to perform well, but this time-consuming process may hinder their use in clinical applications. To explore the feasibility of simplifying the BCI system setup, a wearable BCI system based on the steady-state visual evoked potential (SSVEP) was developed and evaluated. Fifteen healthy participants were recruited to test the fast-setup system using dry and wet electrodes in a real-life scenario. In this study, the average system setup time for the dry electrode was 38.40 seconds and that for the wet electrode was 103.40 seconds, which are times appreciably shorter than those in previous BCI experiments, enabling a rapid setup of the BCI system. Although the electroencephalogram (EEG) signal quality was low in this fast-setup BCI experiment, the BCI system achieved an information transfer rate of 138.89 bits/min with an eight-channel wet electrode and an information transfer rate of 70.59 bits/min with an eight-channel dry electrode, showing that the overall performance was close to that in traditional experiments. In addition, the results suggest that the solutions of a multi-channel dry electrode or few-channel wet electrode may be suitable for the fast-setup SSEVP-BCI. This fast-setup SSVEP-BCI has the advantages of simple preparation and stable performance and is thus conducive to promoting the use of the BCI in clinical practice

    Partial Wave Analysis of J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The KKˉK^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width 500\sim 500 MeV. There is further evidence for a 2+2^{-+} component peaking at 2.55 GeV. The non-KKˉK^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from KKˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL

    Measurements of the Mass and Full-Width of the ηc\eta_c Meson

    Get PDF
    In a sample of 58 million J/ψJ/\psi events collected with the BES II detector, the process J/ψγηc\psi\to\gamma\eta_c is observed in five different decay channels: γK+Kπ+π\gamma K^+K^-\pi^+\pi^-, γπ+ππ+π\gamma\pi^+\pi^-\pi^+\pi^-, γK±KS0π\gamma K^\pm K^0_S \pi^\mp (with KS0π+πK^0_S\to\pi^+\pi^-), γϕϕ\gamma \phi\phi (with ϕK+K\phi\to K^+K^-) and γppˉ\gamma p\bar{p}. From a combined fit of all five channels, we determine the mass and full-width of ηc\eta_c to be mηc=2977.5±1.0(stat.)±1.2(syst.)m_{\eta_c}=2977.5\pm1.0 ({stat.})\pm1.2 ({syst.}) MeV/c2c^2 and Γηc=17.0±3.7(stat.)±7.4(syst.)\Gamma_{\eta_c} = 17.0\pm3.7 ({stat.})\pm7.4 ({syst.}) MeV/c2c^2.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.
    corecore