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Uncertainty Compensated High-Order Adaptive
Iteration Learning Control for Robot-Assisted

Upper Limb Rehabilitation
Qingsong Ai , Member, IEEE, Zemin Liu , Wei Meng , Member, IEEE, Quan Liu , Member, IEEE,

and Sheng Q. Xie , Senior Member, IEEE

Abstract— Upper limb rehabilitation robot can assist stroke
patients to complete daily activities to promote the recovery of
upper-limb motor functions. However, the robot uncertainty and
the patient’s unconscious disturbance impose great difficulties on
the high-performance trajectory tracking of the rehabilitation
robot. In this paper, an uncertainty compensated high-order
adaptive iterative learning controller (UCHAILC) is proposed
to reduce the impact of uncertainty from inside and outside of
the robot during the rehabilitation process. The nonlinear system
is converted into a dynamic linearization model with uncertainty
compensation, and the optimization criterion method is adopted
to estimate the pseudo-partial derivative (PPD) parameters and
the uncertainty respectively, then the previous iterations are used
to update the current parameters through a high-order learning
scheme. The convergence of UCHAILC is theoretically proved.
Simulation and control experiments on a rehabilitation robot are
given to validate the effectiveness of the proposed method, which
is significant to improve the training security and physiotherapy
effect of robot-assisted rehabilitation.

Note to Practitioners—This paper was motivated by the need
to assist stroke patients to restore motor function for executing
daily activities. The inherent difficulties lie in reducing the
tracking errors of rehabilitation robots caused by uncertainty
and involuntary disturbance from patients to avoid secondary
injury. The proposed UCHAILC can transform the complex
nonlinear system into a dynamic linear model with uncertainty
compensation, then the PPD parameters and uncertainty are
estimated through high-order learning law. Theoretical analysis,
simulation, and experiments verified the feasibility of the method.
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Furthermore, the proposed controller is not limited to the
dynamic model and hardware driving mode of the robot system,
which can be easily transplanted to other nonlinear control
systems with uncertainties.

Index Terms— Upper limb rehabilitation, uncertainty compen-
sation, model-free control, iterative learning control.

I. INTRODUCTION

T
HE number of stroke patients is increasing as countries
around the world gradually enter aging societies, and

almost 85% of patients with stroke suffer from upper limb
motor function disorders [1]. Repeated rehabilitation training
can promote the recovery of injured motor neural centers.
Traditional treatment method relies on long-term one-on-one
repetitive assistance training from therapists [2], which is
time-consuming and labor-intensive. Experiments demonstrate
that robot-assisted rehabilitation is effective to encourage
motor function recovery for stroke patients, which can provide
high-intensity, repetitive, and task-specific treatments [3]. Due
to the lack of upper limb motor ability, many stroke patients
are unable to engage in common activities of daily living
(ADL) by themselves, such as eating and drinking. It is
significant to cooperate with ADL in rehabilitation training to
promote the recovery of arm motor function [4]. Nevertheless,
as a multi-variable, nonlinear, and time-varying system, the
motion control of rehabilitation robots with uncertainty from
inside and outside is challenging. The uncertainty factors of
robot-assisted rehabilitation include model uncertainty [5],
end-effector load and friction, etc. In addition, as the robot
contacts with patients directly, the environmental uncertainty
[6] caused by time-varying pathological statuses such as
muscle tone or muscle cramps of the affected limb will
further make it challenging for controller design. Besides,
the trajectories of ADL are usually irregular and cannot be
represented by common functions, which also imposes great
difficulties for precise ADL trajectory tracking.

Since the appearance of rehabilitation robots, their motion
control has attracted extensive attention to prevent second
injuries due to tracking errors. There are many dynamic
uncertainty factors leading to the instability and insecurity
of the rehabilitation robot system. Currently, a majority of
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rehabilitation robots have adopted model-based control meth-
ods to guarantee trajectory tracking accuracy. Mojtaba et al.
[7] designed a nonlinear model reference adaptive impedance
controller for MIT-MANUS with uncertainties. David et al.
[8] designed a robust motion control architecture based on
cascade proportional-integral (PI) and sliding mode controller
(SMC), which could compensate for the matched disturbances
while reducing tracking error. Wu et al. [9] developed a
neural-fuzzy adaptive controller (NFAC) strategy based on a
radial basis function network to track predefined trajectories
with parametric uncertainties and environmental disturbances.
However, it is difficult for the complex nonlinear system to
obtain accurate dynamic parameters. As the model parameters
are time-varying, and the behavior of muscle tissues and
tendons are highly nonlinear during rehabilitation training,
which leads to the degradation performance of the model-
based controller.

Data-driven control (DDC) is a viable method applicable
to nonlinear control systems. The iterative learning control
(ILC) [10] is a typical DDC method to improve the tracking
performance by updating the current iteration parameters with
the control knowledge from the previous iterations. Zhang
et al. [11]designed an iterative trajectory learning scheme to
compensate for unknown time-varying periodic disturbances.
Zhu et al. [12] proposed a double iterative compensation
learning controller to adjust the parameters to satisfy the
patient’s condition. Maqsood [13] et al. developed an itera-
tive learning-based path control method to update the robot
trajectory according to human movement. Nevertheless, these
methods required prior information about the human-robot
interaction model which are often unavailable during the reha-
bilitation process, so they cannot achieve satisfactory tracking
accuracy for nonlinear system with uncertainty. Model-free
adaptive iterative learning controller (MFAILC) is an extended
DDC method proposed by Hou [14], which established an
equivalent dynamic linearization model to substitute the orig-
inal system, only using the input and output (I/O) data to
estimate the pseudo-partial derivative (PPD) by repetitive
operations. Zhao et al. [15] used partial-form dynamic lin-
earization based MFAILC for a noncircular turning tool. Bu
et al. [16] proposed a distributed MFAILC method for an
unknown nonlinear multi-agent system to perform consensus
tracking. Wang et al. [17] proposed a distributed disturbance
compensation based MFAILC algorithm to achieve the consen-
sus tracking of nonlinear multi-agent systems with unknown
disturbance. Esmaeili et al. [18] designed model-free adaptive
iterative learning integral terminal sliding mode controller
to address the tracking issue of the multi-degree-of-freedom
robot under external perturbations. We have also established a
robust iterative feedback tuning control technique for repetitive
training control of a compliant ankle rehabilitation robot [19],
and a high-order pseudo-partial derivative based MFAILC
has been proposed to achieve high-performance repetitive
control of pneumatic artificial muscle (PAM) actuator [20].
However, MFAILC only relies on I/O data to build a dynamic
linearization model, which requires a large number of itera-
tions bringing about a slow convergence rate. The excessive

Fig. 1. (a) Robot-assisted rehabilitation scene; (b) 7- DOF manipulator
model.

consumption of iteration and time of ILC makes it impractical
for robot-assisted rehabilitation.

In this paper, we propose an uncertainty compensated
high-order adaptive iteration learning control (UCHAILC)
scheme for a seven degree-of-freedom (7)-DOF) rehabilitation
robot. To satisfy the requirement of accurate tracking and fast
convergence of irregular human-like trajectories, we design
the uncertainty compensated controller to improve system
robustness and adopt the high-order learning law [21] to utilize
more knowledge of past iterations to boost the convergence
speed of ILC. The main contributions of this work include:
1) A general dynamic linearization framework with uncertainty
compensation is designed to represent the nonlinear robot
system only utilizing I/O data, which does not refer to any
robot model information and is not affected by the dynamic
characteristics of the system; 2) the uncertainty and PPD
parameters are estimated by the optimized criterion function
techniques respectively to avoid the coupling of the estimation
between uncertainty and PPD parameters; 3) a high-order
learning law is utilized to redesign the PPD and control inputs,
which employs more parameters of the previous iterations to
calculate control parameters of current iteration to improve the
convergence speed and achieve a better tracking performance.

The rest of this paper is arranged as follows: Section II intro-
duces the human-like trajectory generation method for rehabil-
itation robots; the principle deduction of proposed UCHAILC
and its convergence proof is presented in Section III; Sim-
ulation and tracking control experiment results of circular
and ADL trajectories on rehabilitation robot are provided in
Section IV, and Section V gives the discussion and conclusion.

II. HUMAN-LIKE TRAJECTORY GENERATION FOR

REHABILITATION ROBOT

To assist patients in completing ADL tasks, we adopt the
Gaussian mixture model (GMM) to generate a human-like
trajectory for the rehabilitation robot. GMM can model the
joint probability of input and output variables, and learn the
probabilistic features from multi-demonstrations effectively.

A. Upper Limb Rehabilitation Robot

The upper limb rehabilitation robot system, as shown
in Fig.1(a), is composed of the KUKA LBR iiwa R700
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Fig. 2. Data collection scene setting.

manipulator and a handle used to connect with humans. This
manipulator is a lightweight collaborative robot suitable for
human-robot interaction tasks. In Fig. 1(b), this manipulator
has seven DOFs and a flexible workspace, similar to a
human arm, which can reach the same position/orientation in
different configurations [22]. The Sunrise.Servoing package
is utilized to implement real-time joint position control mode,
and we use the KUKA Sunrise Toolbox [23] developed by
Safeea to realize the online control signal input and real-time
data acquisition (30Hz) of the robotic arm with MATLAB,
which provide a great convenience in applying the control
algorithm to the manipulator. The open-source code can be
found at https://github.com/Modi1987/KST-Kuka-Sunrise-
Toolbox. The robotic arm can assist patients to conduct
various rehabilitation tasks including common circular
trajectory tracking and irregular ADL tasks.

B. Data Collection and Preprocessing

Irregular ADL trajectories cannot be expressed by common
functions, so we acquire ADL trajectories from healthy people
to generate end-effector human-like trajectories for the robotic
manipulator. In Fig. 2, the motion capture system (Qualisys,
Sweden) is utilized to record the action sequence of healthy
people’s hands while drinking. Four markers (A, B, C, D)
are set on the hand to record the position and orientation
of the endpoint, as shown in the enlarged image. This trial
has been approved by Human Participants Ethics Committee
from Wuhan University of Technology, and written informed
consent was obtained from each participant.

Next, the spatial position and direction of the hand can
be calculated through coordinate transformation. In general,
a rotation matrix is used to represent the position and
orientation [24].

T =









ax bx cx px

ay by cy py

az bz cz pz

0 0 0 1









=









cγ cβ cγ sβsα − sγ cα cγ sβcα + sγ sα px

sγ cβ sγ sβsα + cγ cα sγ sβcα − cγ sα py

−sβ cβsα cβcα pz

0 0 0 1









(1)

where vector a, b, c represent orientation and vector p denotes
position, α, β, γ are orientation angles. The position coor-
dinates a, b, c are determined directly from the coordinates
of the marked points, and orientation angles α, β, γ are
calculated using the Euler angle formula.

The ADL demonstration path can be represented as a set of
positions and directions D = {{ξ n,m}N

n=1}M
m=1, N is the time

length and M is the number of teaching trajectories, ξ n,m =
[τ n,m ˙τ n,m], τ n,m denote the pose at the n−th time-step from
the m-th demonstration, ˙τ n,m is the derivative of τ n,m .

τ n,m = {αn,m, βn,m, γ n,m, pn,m
x , pdn,m

y , pdn,m
z } (2)

C. Human-like Trajectory Generation

Then GMM [25] is adopted to fit and generate the end-
effector human-like trajectories of the manipulator from the
teaching trajectories in the above section. GMM is constructed
based on the weighted sum of Gaussian component density,
and GMM can be expressed as

p(t, ξ) ∼
∑Z

z=1
πzN (µz, 6z) (3)

where Z is the number of Gaussian components and πz

denotes the prior probability,
∑Z

z=1 πz = 1, the mean and

covariance of each Gaussian component are µz =
[

µt,z

µξ,z

]

and 6z =
[

6t t,z 6tξ,z

6ξ t,z 6ξξ,z

]

.

Gaussian mixture regression (GMR) is used to predict the
conditional probability distribution:

p(ξ |t ) =
∑Z

z=1
hz(t)N (µz(t),6z) (4a)

with

hz(t) = πzN ( t |µt,z, 6t t,z)
∑Z

i=1 πiN ( t |µt,i , 6t t,i )
(4b)

µz(t) = µξ,z +6ξ t,z6
−1
t t,z(t − µt,z) (4c)

6z = 6ξξ,z −6ξ t,z6
−1
t t,z6tξ,z (4d)

Due to the properties of multivariate Gaussian distributions,
we can estimate E(ξ |t ) and D(ξ |t ):

µ̂t = E(ξ |t ) =
∑Z

z=1
hz(t)µz(t) (5)

6̂t = D(ξ |t ) = E
(

ξξ T |t
)

− E(ξ |t )ET (ξ |t )

=
∑Z

z=1
hz(t)(µz(t)µT

z (t)+6z)− µ̂zµ̂
T
z (6)

Furthermore, (4a) can be approximated as

p(ξ |t )≈N (µ̂t , 6̂t ) (7)

In this paper, we acquire five sets of demonstration tra-
jectories of healthy people performing drinking tasks within
9 seconds and calculate the Cartesian positions and orientation
angles as the teaching trajectories, which are indicated by the
green curves in Fig. 3. Through GMM and GMR, the end-point
trajectories of human are generated as the red curve.
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Fig. 3. End-point trajectories of humans in Cartesian space.

III. UNCERTAINTY COMPENSATED HIGH-ORDER

ADAPTIVE ITERATION LEARNING CONTROL

A. Problem Formulation

Due to the uncertainty factors of human-robot interaction
system during rehabilitation, we regard it as a discrete-time
nonlinear system with uncertainty described as follows:

yk(t + 1) = f (yk(t), · · ·, yk

(

t − ny

)

, uk(t),

· · ·, uk(t − nu), dk(t), · · ·, dk(t − nd) (8)

where uk(t) and yk(t) denote the system control input and
measured output at time t of the k-th iteration; dk(t) is the
generalized uncertainty including robot system uncertainties
and external human-robot uncertain disturbances; ny , nu and
nd are unknown positive constants which represent the system
order; t ∈ 0, 1, 2· · ·, T − 1 is denoted as time interval; f (·) is
defined as unknown nonlinear function.

The following assumptions are given to dynamically lin-
earize the nonlinear system (8).

Assumption 1: The partial derivatives of f (·) with respect
to control input uk(t) and uncertainty dk(t) are continuous.

Assumption 2: System (8) is generalized Lipschitz, i.e.
if 1uk(t )̸=0 and |1dk(t)|̸=0, satisfying 1yk(t + 1) ≤
b|1uk(t)| and 1yk(t + 1) ≤ c|1dk(t)|, where 1yk(t + 1) =
yk(t + 1) − yk−1(t + 1), 1uk(t) = uk(t) − uk−1(t), 1dk(t) =
dk(t)− dk(t − 1), b, and c are positive constants.

Assumption 3: The uncertainty dk(t) is unknown and
bounded. There is a constant d which satisfies |dk(t)| ≤ d.

Assumption 1 is a common condition for general nonlinear
control systems. Assumption 2 means that a finite incremental
input with bounded disturbance will lead to a finite incremental
output, the constant b and c are determined by trials for quali-
tative analysis. Assumption 3 demonstrates that the uncertainty
is bounded. Then, the following lemma demonstrates that a
generalized discrete-time nonlinear system with uncertainty
can be transformed into an equivalent dynamical linearized
model.

Lemma 1 ([26]): For discrete-time nonlinear system (8)
with Assumptions 1 – 3, if |1uk(t)|̸=0 and |1dk(t)|̸=0,
then (8) can be converted into the following dynamic data
model:

1yk(t + 1) = φk(t)1uk(t)+ ψk(t)1dk(t) (9)

where φk(t) and ψk(t) are time-varying iteration-dependent
PPD parameters, satisfying |φk(t)| ≤ b and |ψk(t)| ≤ c,
respectively.

Equation (9) is the equivalence of system (8). When 1uk(t)

and 1dk(t) are not large, Equation (9) can be regarded as
a dynamic linear system with slowly time-varying param-
eters, that is, 1uk(t) ≤ a, a is a positive constant. This
equation has practical implications in a control system with
unknown factors, which is inevitable and often affects tracking
performance.

B. Uncertainty Compensated High-Order Adaptive Iterative

Learning Control

The goal of the controller is to find suitable bounded control
input uk(t), so that the system output yk(t) can track the given
desired trajectory yd(t). We estimate the uncertainty and the
PPD parameters φk(t) and ψk(t) to construct a model-free
adaptive iterative learning controller with uncertainty com-
pensation to guarantee the stable tracking of the upper limb
rehabilitation robot.

To avoid the complexity of the subsequent equations,
an intermediate variable is first defined

ωk(t) = φ̂k(t)1uk(t)− ψ̂k(t)1d̂k(t) (10)

where φ̂k(t), ψ̂k(t) and d̂k(t) are the estimations of the PPD
parameters φk(t), ψk(t) and uncertainty dk(t), respectively.

Due to the time variability of uncertainty, a modified projec-
tion algorithm [27] is applied to design the criterion function
for the estimation of uncertainty dk(t):

J
(

1d̂k(t)
)

=
∣

∣1yk−1(t + 1)− φ̂k−1(t)1uk−1(t)

−ψ̂k−1(t)1d̂k(t)
∣

∣

2

+ δ1

∣

∣1d̂k(t)−1d̂k−1(t)
∣

∣

2
(11)

where δ1 is a weighted constant. To minimize (11), let
∂ J(1d̂k (t))
∂1d̂k (t)

= 0, the estimation of uncertainty is as follows:

1d̂k(t) = 1 ˆdk−1(t)+ β1 ˆψk−1(t)(1yk−1(t + 1)− ωk−1(t))

δ1 +
∣

∣ ˆψk−1(t)
∣

∣

2

(12)

where β1 ∈ (0, 1) is a step-size constant, and β1 will influence
the convergence speed of the learning process.

As the PPD parameters φk(t) and ψk(t) are unknown and
time-varying, a modified projection algorithm is also used to
obtain the criterion functions for φk(t) and ψk(t):

J
(

φ̂k(t)
)

=
∣

∣1yk−1(t + 1)− φ̂k(t)1uk−1(t)

− ˆψk−1(t)1 ˆdk−1(t)
∣

∣

2

+ δ2

∣

∣φ̂k(t)− ˆφk−1(t)
∣

∣

2
(13)

J
(

ψ̂k(t)
)

=
∣

∣1yk−1(t + 1)− ˆφk−1(t)1uk−1(t)

−ψ̂k(t)1 ˆdk−1(t)
∣

∣

2

+ δ3

∣

∣ψ̂k(t)− ˆψk−1(t)
∣

∣

2
(14)

where δ2 and δ3 are the weighted constants that penalize the
rate of change of parameters estimation.
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To minimize (13) and (14), let ∂ J (φ̂k (t))
∂φ̂k (t)

= 0 and ∂ J (ψ̂k (t))
∂ψ̂k (t)

=
0, the PPD estimation algorithm can be obtained as follows.

φ̂k(t) = ˆφk−1(t)+ β21uk−1(t)(1yk−1(t + 1)− ωk−1(t))

δ2 + |1uk−1(t)|2
(15)

ψ̂k(t) = ˆψk−1(t)+ β31 ˆdk−1(t)(1yk−1(t + 1)− ωk−1(t))

δ3 +
∣

∣1 ˆdk−1(t)
∣

∣

2

(16)

where β2, β3 ∈ (0, 1) are step factors, which can improve the
generality of the PPD estimation algorithm.

To increase the tracking ability of the control scheme for
the compensation to the time-varying parameter, and to restart
the updating of PPD in terms of different operation points, the
reset algorithm [28] is designed as follows:

φ̂k(t) = φ̂1, if
∣

∣φ̂k(t)
∣

∣ ≤ ε1, or|1uk(t)| ≤ ϵ1 (17)

ψ̂k(t) = ψ̂1, if
∣

∣ψ̂k(t)
∣

∣ ≤ ε2, or
∣

∣1d̂k(t)
∣

∣ ≤ ϵ2 (18)

d̂k(t) = d̂1, if
∣

∣1d̂k(t)
∣

∣ > 2d (19)

where φ̂1 and ψ̂1 are the initial value of φ̂k(t) and ψ̂k(t),
respectively, ε1,ε2,ϵ1 and ϵ2 are the small positive constants,
where d̂1 are the initial value of d̂k(t), d is the boundary of
uncertainty in Assumption 3.

From Equations (12) (15) and (16), we can update the
uncertainty estimation value 1d̂k(t) and the PPD estimation
parameters φ̂k(t) and ψ̂k(t) iteratively. Then, the following
cost function is adopted for the controller to make yk(t) track
desired output signal yd(t).

J (uk(t)) = |yd(t + 1)− yk(t + 1)|2 + δ4|uk(t)− uk−1(t)|2

(20)

where yd(t + 1) is the expected output and δ4 > 0 is weight
factor. We define the tracking error as follows:

ek−1(t + 1) = yd(t + 1)− yk−1(t + 1) (21)

Substituting (9) and (21) into (20), the cost function can be
obtained:

J (uk(t)) = |ek−1(t + 1)− φk(t)1uk(t)− ψk(t)1dk(t)|2

+ δ4|uk(t)− uk−1(t)|2 (22)

Let ∂ J (uk (t))
∂uk (t)

= 0, and φ̂k(t), ψ̂k(t) and 1d̂k(t) are used to
estimate φk(t), ψk(t) and 1dk(t), then the control input is
designed as follows:

uk(t) = uk−1(t)+ β4φ̂k(t)ek−1(t + 1)

δ4 +
∣

∣φ̂k(t)
∣

∣

2 − β4φ̂k(t)ψ̂k(t)1d̂k(t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2

(23)

where β4φ̂k (t)ek−1(t+1)

δ4+|φ̂k (t)|2 can be considered as the tracking part of

the control input, − β4φ̂k (t)ψ̂k (t)1d̂k (t)

δ4+|φ̂k (t)|2 is the uncertainty compen-

sation part, β4 is step-size constant.
Then, the high-order learning scheme for PPD φ̂k(t), which

uses the parameters from more than one past run to estimate

the current iteration, is employed to redefine the criterion
function (13) as follows:

J
(

φ̂k(t)
)

=
∣

∣1yk−1(t + 1)− φ̂k(t)1uk−1(t)

− ˆψk−1(t)1 ˆdk−1(t)
∣

∣

2

+ δ2

∣

∣

∣φ̂k(t)−
∑m

i=1
αîφk−i (t)

∣

∣

∣

2
(24)

where m is the order, αi is the weighting coefficient with
∑m

i=1 αi = 1, and α1≥α2≥· · ·≥αm . High-order learning law
can be used to improve the convergence speed [29].

Let ∂ J (φ̂k (t))
∂φ̂k (t)

= 0, the high-order estimation algorithm of
φ̂k(t) is expressed below:

φ̂k(t) =
β21uk−1(t)

(

1yk−1(t + 1)− ˆψk−1(t)1 ˆdk−1(t)
)

δ2 + |1uk−1(t)|2

+ δ2
∑m

i=1 αîφk−i (t)

δ2 + |1uk−1(t)|2
(25)

Similarly, the high-order scheme is extended to calculate
control input to improve the tracking performance and the cost
function (20) is rewrote as follows:

J (uk(t)) = |ek−1(t + 1)− φk(t)1uk(t)− ψk(t)1dk(t)|2

+ δ4

∣

∣

∣uk(t)−
∑n

j=1
µ j uk− j (t)

∣

∣

∣

2
(26)

where n is the order, µ j is the weighting coefficient with
∑n

j=1 µ j = 1 and µ1≥µ2≥· · ·≥µ j .
Let ∂ J (uk (t))

∂uk (t)
= 0, the control input can be obtained with the

same calculation method.

uk(t) =
(

φ̂k(t)
)2

uk−1(t)+ δ4
∑n

j=1 µ j uk− j (t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2

+ β4φ̂k(t)(ek−1(t + 1)− ψ̂k(t)1d̂k(t))

δ4 +
∣

∣φ̂k(t)
∣

∣

2 (27)

Since φ̂k(t) and uk(t) are calculated based on the previous
iterations, high-order learning algorithms (25) and (27) can
be applied to obtain φ̂k(t) and uk(t) when k > m(orn).
The original algorithms (15) and (23) are used when 1 <

k ≤ m(orn). So φ̂k(t) and uk(t) can be expressed as in (28)
and (29), shown at the bottom of the next page. Therefore, the
structure diagram of the proposed UCHAILC is illustrated in
Fig. 4.

C. Convergence Analysis

Assumption 4: The PPD parameters satisfy φ̂k(t) >

0(φ̂k(t) < 0) and ψ̂k(t) > 0(ψ̂k(t) < 0). It is assumed that
φ̂k(t) > 0 and ψ̂k(t) > 0 at any instant t and iteration k.

Assumption 4 is inspired by [27]. It is a common condition
in practice that means that a change in the system output and
the corresponding input satisfies the positive correlation.

Theorem 1: Consider nonlinear system (8) with uncertainty
under the Assumptions 1 - 4. When the parameters 1dk(t),
φk(t), and ψk(t) are estimated by (12) (28) (16), then 1d̂k(t),
φ̂k(t) and ψ̂k(t) are bounded if β1, β2, β3 ∈ (0.5, 1) and
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δ1,δ2,δ3, 1uk(t), 1d̂k(t), and ψ̂k(t) satisfy the following
inequalities:

δ1 >
(β1(a + 2d))2

4(1 − β1)
, δ2 >

(β2(2d + c))2

4(1 − β2)
,

δ3 >
(β3(a + c))2

4(1 − β3)
,

|1uk(t)| >
√

δ2

2β2 − 1
,
∣

∣1d̂k(t)
∣

∣ >

√

δ3

2β3 − 1
,

∣

∣ψ̂k(t)
∣

∣ >

√

δ1

2β1 − 1
(30)

Proof: Define the parameter estimation errors as 1̃dk(t) =
1d̂k(t)−1dk(t), φ̃k(t) = φ̂k(t)−φk(t), ψ̃k(t) = ψ̂k(t)−ψk(t).
When 1 < k ≤ m, substituting Eq. (12), (15) and (16) into the
above parameter estimation errors, the estimation errors can
be written as follows:





φ̃k(t)
ψ̃k(t)
1̃dk(t)



 =





M11 M12 M13

M21 M22 M23

M31 M32 M33









˜φk−1(t)
˜ψk−1(t)

1̃dk−1(t)





+





φk−1(t)− φk(t)
ψk−1(t)− ψk(t)
1dk−1(t)−1dk(t)



 (31)

where M11 = 1 − β2(1uk−1(t))
2

δ2+(1uk−1(t))2
, M12 = − β21uk−1(t)1 ˆdk−1(t)

δ2+(1uk−1(t))2
,

M13 = − β21uk−1(t)ψk−1(t)
δ2+(1uk−1(t))2

, M21 = − β31 ˆdk−1(t)1uk−1(t)

δ3+(1 ˆdk−1(t))2
, M22 = 1 −

β3(1 ˆdk−1(t))2

δ3+(1 ˆdk−1(t))2
, M23 = − β31 ˆdk−1(t)ψk−1(t)

δ3+(1 ˆdk−1(t))2
, M31 = − β1 ˆψk−1(t)1uk−1(t)

δ1+( ˆψk−1(t))2
,

M32 = − β1 ˆψk−1(t)1dk−1(t)
δ1+( ˆψk−1(t))2

, M33 = 1 − β1( ˆψk−1(t))2

δ1+( ˆψk−1(t))2
.

Since |φk(t)| ≤ b, |ψk(t)| ≤ c and |dk(t)| ≤ d, the L1 norm
of the vector in (31) satisfies following inequality:

∥

∥

∥

∥

∥

∥

φk−1(t)− φk(t)
ψk−1(t)− ψk(t)
1dk−1(t)−1dk(t)

∥

∥

∥

∥

∥

∥

1

≤ 2(b + c + 2d) (32)

To ensure the convergence of the iterative algorithm, the
conditions for the iterative matrix M satisfying ∥M∥ < 1 are:

β2|1uk−1(t)|(
∣

∣1 ˆdk−1(t)
∣

∣ +
∣

∣ ˆψk−1(t)
∣

∣)

δ2 + (1uk−1(t))2
<1− β2(1uk−1(t))

2

δ2 + (1uk−1(t))2

(33a)

β3

∣

∣1 ˆdk−1(t)
∣

∣(|1uk−1(t)| +
∣

∣ ˆψk−1(t)
∣

∣)

δ3 + (1 ˆdk−1(t))2
<1− β3(1 ˆdk−1(t))2

δ3 + (1 ˆdk−1(t))2

(33b)

β1

∣

∣ ˆψk−1(t)
∣

∣(|1uk−1(t)| + |1dk−1(t)|)
δ1 + ( ˆψk−1(t))2

<1− β1( ˆψk−1(t))2

δ1 + ( ˆψk−1(t))2

(33c)

1 − β2(1uk−1(t))
2

δ2 + (1uk−1(t))2
<

1

2
(33d)

1 − β3(1 ˆdk−1(t))2

δ3 + (1 ˆdk−1(t))2
<

1

2
(33e)

1 − β1( ˆψk−1(t))2

δ1 + ( ˆψk−1(t))2
<

1

2
(33f)

Rearranging inequalities (33), we have (30). According to
the property of norm, and ∥M∥ ≤ γ < 1, taking the norm
to (31), we can obtain
∥

∥

∥

∥

∥

∥

φ̃k(t)
ψ̃k(t)
1̃dk(t)

∥

∥

∥

∥

∥

∥

1

≤ γ

∥

∥

∥

∥

∥

∥

˜φk−1(t)
˜ψk−1(t)

1̃dk−1(t)

∥

∥

∥

∥

∥

∥

1

+ (2b + 2c + 4d) ≤ · · ·

≤ γ k−1

∥

∥

∥

∥

∥

∥

φ̃1(t)
ψ̃1(t)
1̃d1(t)

∥

∥

∥

∥

∥

∥

1

+ (1 − γ k−1)(2b + 2c + 4d)

1 − γ

(34)

From (34), φ̃k(t), ψ̃k(t) and 1̃dk(t) are bounded at any
instant t and iteration k. Since φk(t), ψk(t) and 1dk(t)
are bounded according to assumptions 2 and 3, the upper
boundedness of φ̂k(t), ψ̂k(t) and 1d̂k(t) can be guaranteed.

In addition, the PPD parameter φk(t) is estimated by a
high-order learning algorithm (25) when k > m. Substituting
the dynamic linearization model (9) into (25) and taking the
absolute value at both sides, we have as in (35), shown at the
bottom of the next page.

According to Lemma 1, φk−1(t), 1dk−1(t) are bounded,
meanwhile 1̃dk−1(t), ˜ψk−1(t) and ˆψk−1(t) are bounded. In
addition, when 1 < k ≤ m, φ̂k(t) is bounded from (34),
so

∣

∣

∑m
i=1 αîφk−i (t)

∣

∣ is bounded too. Therefore, if β1, β2, β3 ∈
(0.5, 1] and δ1,δ2,δ3, 1uk(t), 1d̂k(t), and ψ̂k(t) satisfy (30),
1d̂k(t), φ̂k(t) and ψ̂k(t) are bounded.

Theorem 2: Consider systems (8) satisfying Assump-
tions 1-4 with uncertainty compensation controller (29). If
the PPD parameters φk(t) and ψk(t) and uncertainty 1dk(t)

are estimated in (28) (16) (12), then there exists β4∈(0, 1)
and δ4 >

(β4b)2

4 , such that: 1) when k → ∞, the system
output tracking error is convergent; 2) the control law uk(t) is
bounded.

Proof: According to (9) and (21), we have

ek(t + 1)− ek−1(t + 1)

φ̂k(t) =















ˆφk−1(t)+ β21uk−1(t)(1yk−1(t + 1)− ωk−1(t))

δ2 + |1uk−1(t)|2
, 1 < k ≤ m

β21uk−1(t)
(

1yk−1(t + 1)− ˆψk−1(t)1 ˆdk−1(t)
)

δ2 + |1uk−1(t)|2
+ δ2

∑m
i=1 αîφk−i (t)

δ2 + |1uk−1(t)|2
, k > m

(28)

uk(t) =























uk−1(t)+ β4φ̂k(t)ek−1(t + 1)

δ4 +
∣

∣φ̂k(t)
∣

∣

2 − β4φ̂k(t)ψ̂k(t)1d̂k(t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2 , 1 < k ≤ n

(

φ̂k(t)
)2

uk−1(t)+ δ4
∑n

j=1 µ j uk− j (t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2 + β4φ̂k(t)(ek−1(t + 1)− ψ̂k(t)1d̂k(t))

δ4 +
∣

∣φ̂k(t)
∣

∣

2 , k > n

(29)
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Fig. 4. Structure diagram of the proposed UCHAILC.

= (yd(t + 1)− yk(t + 1))

− (yd(t + 1)− yk−1(t + 1))

= −1yk(t + 1) = −φk(t)1uk(t)− ψk(t)1dk(t)

= −φk(t)(
β4φ̂k(t)ek−1(t + 1)

δ4 +
∣

∣φ̂k(t)
∣

∣

2

+
(

φ̂k(t)
)2

uk−1(t)+ δ4
∑n

j=1 µ j uk− j (t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2

− β4φ̂k(t)ψ̂k(t)1d̂k(t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2 − uk−1(t))− ψk(t)1dk (36)

Take the absolute values of both sides, we can get

|ek(t + 1)| ≤
∣

∣

∣

∣

∣

1 − β4φk(t)φ̂k(t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2

∣

∣

∣

∣

∣

|ek−1(t + 1)|

+
∣

∣

∣

∣

∣

β4φk(t)φ̂k(t)ψ̂k(t)1d̂k(t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2 − ψk(t)1dk(t)

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

δ4φk(t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2

∣

∣

∣

∣

∣

∣

∣

∣uk−1(t)−
∑n

j=1
µ j uk− j (t)

∣

∣

∣

≤ |σ ||ek−1(t + 1)|

+
∣

∣

∣

∣

∣

β4φk(t)φ̂k(t)ψ̂k(t)1d̂k(t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2 − ψk(t)1dk(t)

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

δ4φk(t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2

∣

∣

∣

∣

∣

∣

∣

∣uk−1(t)−
∑n

j=1
µ j uk− j (t)

∣

∣

∣

(37)

where σ = 1 − β4φk (t)φ̂k (t)

δ4+|φ̂k (t)|2 .

The convergence of the system output tracking error needs
to satisfy the following condition

0 <
β4φk(t)φ̂k(t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2 ≤ β4φk(t)

2
√
δ4

< 1 (38)

Since φ̂k(t) is bounded and |φk(t)| ≤ b, thereby, δ4 >
(β4b)2

4 , β4∈(0, 1) need to be satisfied. From Assumption 4 and
Theorem 1, when k → ∞ there must exist a small constant η
satisfying

∣

∣

∣

∣

∣

β4φk(t)φ̂k(t)ψ̂k(t)1d̂k(t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2 − ψk(t)1dk(t)

∣

∣

∣

∣

∣

∣

∣φ̂k(t)
∣

∣ =
∣

∣

∣

∣

δ2
∑m

i=1 αîφk−i (t)

δ2 + |1uk−1(t)|2
∣

∣

∣

∣

+
∣

∣

∣

∣

∣

β21uk−1(t)
(

φk−1(t)1uk−1(t)+ ψk−1(t)1dk−1(t)− ˆψk−1(t)1 ˆdk−1(t)
)

δ2 + |1uk−1(t)|2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

δ2

δ2 + |1uk−1(t)|2
∣

∣

∣

∣

∣

∣

∣

∑m

i=1
αîφk−i (t)

∣

∣

∣

+ |β2φk−1(t)|
∣

∣

∣

∣

∣

(1uk−1(t))
2

δ2 + |1uk−1(t)|2

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

β21uk−1(t)
( ˜ψk−1(t)1dk−1(t)+ ˆψk−1(t)1̃dk−1(t)

)

δ2 + |1uk−1(t)|2

∣

∣

∣

∣

∣

(35)
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+
∣

∣

∣

∣

∣

δ4φk(t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2

∣

∣

∣

∣

∣

∣

∣

∣uk−1(t)−
∑n

j=1
µ j uk− j (t)

∣

∣

∣ ≤ η (39)

Taking the norm to both sides of (37), we can get

|ek(t + 1)| ≤ |σ ||ek−1(t + 1)| + η

≤ · · · ≤
∣

∣σ k−1
∣

∣|e1(t + 1)| + (1 − σ k−1)

1 − σ
η (40)

Since 0 < σ < 1, the boundedness of the tracking error
ek(t + 1) is guaranteed.

when 1 < k ≤ n, we have the control input from (23)

|1uk(t)| =
∣

∣

∣

∣

∣

β4φ̂k(t)ek−1(t + 1)

δ4 +
∣

∣φ̂k(t)
∣

∣

2 − β4φ̂k(t)ψ̂k(t)1d̂k(t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

β4φ̂k(t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2

∣

∣

∣

∣

∣

|ek−1(t + 1)|

+
∣

∣

∣

∣

∣

β4φ̂k(t)ψ̂k(t)1d̂k(t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2

∣

∣

∣

∣

∣

≤ |ϱ||ek−1(t + 1)| + |κ| (41)

where ϱ = β4φ̂k (t)

δ4+|φ̂k (t)|2 , κ = β4φ̂k (t)ψ̂k (t)1d̂k (t)

δ4+|φ̂k (t)|2 are bounded, and

0 < ϱ < 1.
According to (40) and (41), we have

|uk(t)| = |uk(t)− uk−1(t)+ uk−1(t)|
≤ |1uk(t)| + |uk−1(t)|
≤ · · · ≤ |1uk(t)|+|1uk−1(t)| + · · ·|1u1(t)|+|u0(t)|
≤ |ϱ|(|ek−1(t + 1)| + · · · + |e1(t + 1)|)+ k|κ|

+ |u0(t)|

≤ |ϱ|(1 − σ k−1

1 − σ
|e1(t + 1)|

+
k(1 − σ)−

(

1 − σ k−1
)

(1 − σ)2
η)+ k|κ| + |u0(t)| (42)

Because φ̂k(t), e1(t + 1) and u0(t) are bounded, uk(t) is also
bounded.

When k > n, the control input is from (27)

|uk(t)| =
∣

∣

∣

∣

∣

(

φ̂k(t)
)2

uk−1(t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

δ4
∑n

j=1 µ j uk− j (t)

δ4 +
∣

∣φ̂k(t)
∣

∣

2

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

β4φ̂k(t)(ek−1(t + 1)− ψ̂k(t)1d̂k(t))

δ4 +
∣

∣φ̂k(t)
∣

∣

2

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

1 − δ4

δ4 +
∣

∣φ̂k(t)
∣

∣

2

∣

∣

∣

∣

∣

|uk−1(t)|

+
∣

∣

∣

∣

∣

δ4

δ4 +
∣

∣φ̂k(t)
∣

∣

2

∣

∣

∣

∣

∣

∣

∣

∣

∑n

j=1
µ j uk− j (t)

∣

∣

∣

+
∣

∣

∣

∣

∣

β4φ̂k(t)(ek−1(t + 1)− ψ̂k(t)1d̂k(t))

δ4 +
∣

∣φ̂k(t)
∣

∣

2

∣

∣

∣

∣

∣

(43)

Since the boundedness of uk(t) when k < n has been
proved,

∣

∣

∣

∑n
j=1 µ j uk− j (t)

∣

∣

∣ is convergent, whilst ek(t + 1),φ̂k(t),

ψ̂k(t) and 1d̂k(t) have been verified to be bounded, the
boundedness of the uk(t) is guaranteed. This completes the
proof.

IV. SIMULATION AND EXPERIMENTS

We conduct comparison simulation on MATLAB and exper-
iments on a 7-DOF flexible rehabilitation robot to verify the
effectiveness of the proposed UCHAILC method.

A. Simulation Validation

Firstly, we perform a simulation test on MATLAB to test the
feasibility of the UCHAILC method. The proposed UCHAILC
method and MFAILC [16] are applied to control the nonlinear
system (44), respectively, which contains time-varying param-
eters and random disturbance. In MFAILC, the robot system is
converted into the dynamic linearization model 1yk(t + 1) =
φk(t)1uk(t), and the control knowledge of the previous only
one run is used to update the current PPD parameter and
control input. The nonlinear system is defined as follows:

y(t + 1) =



























y(t)

1 + y2(t)
+ (u(t)+ d(t))3, 0 ≤ t < 150

(y(t)y(t − 1)y(t − 2)u(t − 1)(y(t − 2)− 1))

1 + y2(t − 1)+ y2(t − 2)

+ a(t)(u(t)+ d(t))

1 + y2(t − 1)+ y2(t − 2)
, 150 ≤ t ≤ 300

(44)

where y(t), u(t), d(t) are defined in (8), and parameters are
time-varying.

The desired trajectory is:

yd(t + 1) =















0.5 ∗ (−1)round(t/100), 0 ≤ t ≤ 150

0.5 sin

(

π t

100

)

+ 0.3 cos

(

π t

50

)

, 150 < t ≤ 200

0.5 ∗ (−1)round(t/100), 200 < t ≤ 300
(45)

During simulation, we assume that the disturbance function
with the non-repetitive time-varying parameter is d(k, t) =
0.1 ∗ rand(1, 1). The value ranges of iteration parameters and
weighting coefficients are determined by Theorems 1 and 2,
and different parameter values within the range are tested in
simulation. Since the purpose of the simulation is to verify the
effectiveness of the algorithm, instead of selecting the optimal
parameters, we only display the set of iteration parameters
with the best performance on the robot platform (See IV.B).
Other parameters are determined according to the system,
we choose the initial values of output and input y(1) = 0.5,
u(1) = 0 and disturbance d̂(1) = 0, respectively. The initial
values of the PPD parameters are selected as φ̂1 = 10,
ψ̂1 = 0.75.

The tracking results of the MFAILC and the UCHAILC
are shown in Fig. 5. The black solid line denotes the desired
trajectory and the rest five lines are the trajectories of the
4th, 10th, 20th, 50th and 100th iterations. As the number of
iteration increases, the actual trajectory gradually approaches
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Fig. 5. Trajectory tracking results of MFAILC and UCHAILC.

the desired trajectory. Due to the superimposed random noise,
the actual trajectory fluctuates around the desired trajectory,
even the last 100th trajectory still cannot coincide with yd .
From the enlarged image in the corner, we can see that the
magenta 10th iteration trajectory of MFAILC is completely
deviated from the desired black line, the magenta 10th line in
UCHAILC is close to the desired trajectory; and the green 20th

iteration trajectory of MFAILC still has a large deviation, while
the 20th’s deviation of UCHAILC is much smaller. Meanwhile,
the error of the 50th and 100th of MFAILC and UCHAILC are
close to the desired trajectory. To illustrate the error clearly,
Fig. 6 shows the curves of the maximum tracking error of
each iteration, it is obvious the curve of UCHAILC is almost
all below the MFAILC and it is also smoother than MFAILC.
Therefore, the UCHAILC can achieve a fast convergence of
the maximum tracking error. Compared with MFAILC, the
UCHAILC takes robot system model uncertainties and exter-
nal human-robot uncertain disturbances into consideration.
Thus the UCHAILC can obtain better tracking performance
when the system contains uncertainty in simulation.

B. Robot-Assisted Circular Trajectory Tracking Control

To ensure the safety and accuracy of the rehabilitation
training, the proposed UCHAILC method is applied to 7-DOF
upper limb rehabilitation robot (Fig. 1) to improve the tracking
accuracy of the robot. The control input is the set value of the
seven joints of the robot. The main task is to make each of the
seven joints keep track of their respective desired trajectory,

Fig. 6. Maximum tracking error of MFAILC and UCHAILC.

to make the manipulator overcome system model uncertainties
and external human-robot uncertain disturbances.

The target trajectory is designed to follow a circular trajec-
tory 3 times in Cartesian space, then the Cartesian trajectory is
transformed into joint space trajectories through inverse kine-
matics, which is implemented with the damped least squares
method in KUKA Sunrise Toolbox. The black solid lines in
Fig. 7are the desired trajectories. MFAILC and UCHAILC are
used to control the robot to move along a circular trajectory
with the participant. After trying different iteration parameters
and weighting coefficients, the set of parameters with the best
performance on the robot platform are chosen as β1 = 0.9,
β2 = 0.6, β3 = 0.6, β4 = 0.9, δ1 = 0.01,δ2 = 0.02, δ3 = 0.02,
δ4 = 0.01. The weighting coefficients of high-order learning
law are α1 = 0.5, α2 = 0.3, α3 = 0.2, µ1 = 0.5, µ2 = 0.3,
µ3 = 0.2, and the high-order estimation algorithm starts from
the 4th iteration. Considering the relative positions between the
manipulator and the human, we set the initial values of control
input as u1 = [0.00, 0.64, 0.00,−1.04, 0.00, 1.46, 0.00] and
uncertainty d̂1 = [0, 0, 0, 0, 0, 0, 0]. The initial values of PPD
parameters are selected as φ̂1 = 1,ψ̂1 = 0.75.

The tracking results of MFAILC and UCHAILC are shown
in Fig. 7. The black solid lines represent the desired joint
angles, and the dotted lines are the actual joint angles in
different iterations. It can be seen that seven joints of the
upper limb rehabilitation robot can gradually get close to
the desired trajectory with the number of iteration increases.
In addition, the red last iteration trajectories almost coincide
with the desired trajectories, and the tracking error of the last
iteration is acceptable in practice. Table I and II list the max
tracking error rate of a trajectory for the two methods, which
can be obtained through the following equation:

r = max
0≤t≤60

(
|yk(t)− yd(t)|

|yd(t)|
) (46)

We can find that the tracking error of UCHAILC can
reach a satisfactory accuracy after about 10 iterations, while
MFAILC needs almost 30 times to achieve a similar accuracy.
Therefore, the efficiency of UCHAILC is much higher than
MFAILC. Fig. 8 presents the control input of joint 4 as an
example. The curves of control input in UCHAILC fluctuated
more obviously than that in MFAILC, which indicates that
UCHAILC performs better robustness towards the system
model uncertainties and external human-robot uncertain dis-
turbances than MFAILC.
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Fig. 7. Joint angles tracking results for circular trajectory.

Fig. 8. Control input of joint 4 for circular trajectory tracking.

Fig. 9 is the tracking results of the end-effecter in Cartesian
space. The black curve is the desired trajectory, and 3 circles
of the trajectories are completely in consistent; the blue and
red curves represent the actual Cartesian trajectory of the
last iteration of MFAILC and UCHAILC. In the middle
enlarged view, we can see that the actual 3 circle trajectories
of the two methods are not the same as desired trajectory

Fig. 9. Cartesian trajectory of MFAILC and UCHAILC.

TABLE I

MAX TRACKING ERROR RATE OF MFAILC IN TWO

TRAJECTORY TRACKING EXPERIMENTS

TABLE II

MAX TRACKING ERROR RATE OF UCHAILC IN TWO

TRAJECTORY TRACKING EXPERIMENTS

because of unavoidable error, but the trajectory of the proposed
UCHAILC method is closer to the desired trajectory than
MFAILC.
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Fig. 10. Joint angles tracking results for human-like trajectory.

C. Human-Like Trajectory Tracking Control

Finally, the proposed UCHAILC is applied to the
human-like trajectory tracking control experiments on reha-
bilitation robots. In Section II, we have acquired the drinking
trajectory in Cartesian space in Fig. 3. Considering the reach-
able space of the manipulator, we choose an available initial
position for the upper limb rehabilitation robot to design
the drinking trajectory and then convert it into joint space
through inverse kinematics. We adopt the controller param-
eters and weight factors with the best performance on the
robot platform, only the initial control input is changed into
u1 =

[

π/6, π/6, 0,−π/2, 0, π/3, 0
]

to match the reach of the
manipulator.

Fig. 10 exhibits the tracking results of MFAILC and
UCHAILC, the black solid lines represent the desired joint
angles, which are irregular and contain small perturbations
caused by some unconscious small movements of people while
acquiring data using a motion capture system. It can be seen
from the enlarger image of joint 4 that the black desired
trajectory has several irregular bumps, which will increase the
difficulty of the tracking control algorithm. Both controllers

can obtain satisfying performance as long as the iteration num-
ber is sufficient. In the enlarger image of Fig.10(a), the 40th

trajectory still doesn’t reach the desired trajectory though the
error is acceptable, while the 10th trajectory of Fig.10(b) can
reach the desired trajectory. The max tracking error rate of the
two methods are shown in Table I and II. The UCHAILC can
achieve a fast convergence of the maximum tracking error. In
addition, it can be seen from the results of two sets of exper-
iments that the error rate of the drinking trajectory tracking is
larger than that of the circular trajectory tracking with the same
number of iterations. Therefore, irregular trajectory tracking
is more difficult than circle trajectory tracking. In conclusion,
the proposed UCHAILC can greatly improve the efficiency of
iteration and decrease the consumption of time and memory.

V. DISCUSSION AND CONCLUSION

Position tracking control is one of the most important pre-
requisites for robot-assisted rehabilitation, which can ensure
the safety and effectiveness of the rehabilitation process,
and avoid secondary injuries to patients caused by excessive
tracking errors. In this paper, an uncertainty compensated
high-order adaptive iterative learning controller is proposed for
the precise tracking control of a 7-DOF upper limb rehabilita-
tion robot. Uncertainty compensation enhances the adaptability
of the robot system towards model uncertainty and external
disturbances to ensure the system’s robustness. Usually, ILC
needs numerous runs for accurate trajectory tracking, while
the proposed UCHAILC utilizes the high-order learning law
to make it converge faster using the data of previous several
iterations. Tracking control experiment results of the upper
limb rehabilitation robot indicate that the proposed UCHAILC
method has a faster convergence rate and can achieve better
tracking performance.

The proposed UCHAILC method is a model-free con-
troller, which is convenient to transplant and not restricted
by the hardware system. Therefore, this method will have a
wide range of application prospects in the nonlinear system
control area. Besides, the automatic rehabilitation evaluation
based on the patient’s training data could be combined into
rehabilitation training to formulate a personalized rehabilita-
tion strategy, in which the rehabilitation trajectory could be
adjusted according to the patient’s recovery conditions, e.g. the
appropriate range of motion and training speed. In addition, the
surface electromyography (sEMG) signal could be introduced
to identify the patient’s muscle fatigue state to reasonably
adjust the training cycle and improve the recovery effect.
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