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SSVEP-based Brain-Computer Interface Controlled

Robotic Platform with Velocity Modulation
Yue Zhang, Kun Qian, Sheng Quan Xie, Senior Member, IEEE, Chaoyang Shi, Member, IEEE, Jun Li ,

Member, IEEE, and Zhi-Qiang Zhang, Member, IEEE

Abstract—Steady-state visual evoked potential (SSVEP)-based
brain-computer interfaces (BCIs) have been extensively studied
due to many benefits, such as non-invasiveness, high information
transfer rate, and ease of use. SSVEP-based BCI has been
investigated in various applications by projecting brain signals to
robot control commands. However, the movement direction and
speed are generally fixed and prescribed, neglecting the user’s
requirement for velocity changes during practical implementa-
tions. In this study, we proposed a velocity modulation method
based on stimulus brightness for controlling the robotic arm
in the SSVEP-based BCI system. A stimulation interface was
designed, incorporating flickers, target and a cursor workspace.
The synchronization of the cursor and robotic arm does not
require the subject’s eye switch between the stimuli and the robot.
The feature vector consists of the characteristics of the signal
and the classification result. Subsequently, the Gaussian mixture
model (GMM) and Bayesian inference were used to calculate the
posterior probabilities that the signal came from a high or low
brightness flicker. A brain-actuated speed function was designed
by incorporating the posterior probability difference. Finally, the
historical velocity was considered to determine the final velocity.
To demonstrate the effectiveness of the proposed method, online
experiments, including single- and multi-target reaching tasks,
were conducted. The extensive experimental results validated the
feasibility of the proposed method in reducing reaching time and
achieving proximity to the target.

Index Terms—Brain-computer interface (BCI), electroen-
cephalography (EEG), steady-state visual evoked potential
(SSVEP), robotic arm, velocity modulation

I. INTRODUCTION

Individuals who experience severe motor impairments en-

counter challenges in performing their daily tasks [1], [2].

Many studies attempted to help people achieve mobility with

assistive robotic devices [3]. However, several traditional

forms of assistance still require manual control ability from

users. Brain-computer interfaces (BCIs) can establish a direct
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connection between brain signals and external devices, elimi-

nating reliance on peripheral nerves and muscles [4]. In recent

years, BCIs have been extensively used in various assistance

and rehabilitation applications, such as wheelchair [5], speller

[6], and robot arm [7], [8].

Electroencephalography (EEG) is broadly employed in BCI

research due to many advantages, such as non-invasiveness,

high temporal resolution, and simple operation [9]. Steady-

state visual evoked potential (SSVEP) as one of EEG

paradigms has attracted significant attention because of its

minimal training requirements and high signal-to-noise ratio

(SNR) [10]–[12]. The SSVEP-based BCI system maps the

brain signals to robot commands and then transmits them

to the corresponding manipulation [13]. Therefore, SSVEP-

based BCIs have been widely explored in the field of assistive

and rehabilitative applications in recent decades. For example,

Guo et.al [14] designed an SSVEP-based BCI-controlled soft

robotic glove for post-stroke hand function rehabilitation.

Sakkalis et.al [15] implemented efficient electric wheelchair

navigation by utilizing an SSVEP-controlled system. In a

separate study, Wang et.al [16] built a portable SSVEP

system specifically designed for rehabilitation exoskeletons.

Chen et.al [17] integrated SSVEP with computer vision to

fulfill robot pick-and-place tasks. Subsequently, Chen et.al

[18] further employed the augmented reality (AR) technique

that eliminates the need for subjects to switch attention

between the stimulation and the robotic arm. These studies

effectively established the connection between SSVEP signals

and external robots with prescribed velocity control. However,

modulating the velocity of the robots in response to the user’s

intentions can bring more benefits in human motion assistance

and rehabilitative scenarios.

In recent years, several studies have considered velocity

control in SSVEP-based BCI systems. For instance, Zhao et.al

[19] mapped three flashing squares to the three motion modes,

where different frequencies represent fast, medium, and slow

speeds. However, by replacing the stimulus-command pair

with the stimulus-velocity pair, the BCI achieves velocity

modulation in a discrete manner. To realize continuous ve-

locity mapping, Zhang et.al [20] introduced stimuli with

different frequencies to control a navigation robot. A self-

defined mapping function on the basis of correlation values

was proposed to output continuous control commands. Ad-

ditionally, Sharma et.al [21] demonstrated that the amplitude

of brain signals can be modulated by varying the distances

between the subject and the stimulus. However, only one

stimulus was designed for unidirectional robot manipulation
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Fig. 1. The experimental environment of the proposed SSVEP-based BCI
system for robotic arm velocity control.

since orthoptic eye accommodation may bring difficulties in

multi-class interface design. In addition to stimulus frequency

and distance, voluntary attention increased stimulus-driven

EEG activity [22]. Integrating the attention factor, Molina-

Cantero et.al [23] utilized SSVEP responses obtained from

a single-channel EEG headset known as NeuroSky Mindwave

(NM). The NM was able to provide attention levels, which

were then used to modulate the speed of a controlled cursor.

However, the requirement for a specific headset limits its

generalizability and scalability. On the other hand, flicker

brightness is another important component that influences the

characteristics of the SSVEP signal; thus, some studies have

investigated the brain response to the modulation of stimulus

brightness [24]. For instance, the findings in [25] revealed that

SSVEP amplitude generally increases with higher brightness

levels. Zhang el.al found that the power spectrum density

(PSD) of the stimulus maintained a certain positive correlation

with brightness [26]. Nevertheless, studies investigating the

feasibility and effectiveness of employing brightness in robot

velocity modulation are still limited to SSVEP-based BCIs.

In this study, we aimed to explore a velocity modulation

method for controlling the robotic arm in the SSVEP-based

BCI. The main contributions are: 1) Development of a stim-

ulation interface including flickers, a target, and a cursor

workspace. It enables synchronized movement of the cursor

and robotic arm. Subjects are not required to switch their

eyes between the stimulus and the robot. 2) Proposal of a

stimulus brightness-based velocity modulation model. The fea-

ture vector is constructed using the correlation coefficient and

power spectral density (PSD). 3) Devising a speed function

that leverages the difference in posterior probabilities of being

a high- or low-brightness flicker. The historical velocity was

incorporated in the velocity determination to avoid occasional

misclassification. To evaluate the performance of the proposed

method, online experiments, including single- and multi-target

reaching tasks, were conducted. Two additional control meth-

ods were used for comparison. Extensive evaluations showed

that the proposed method enabled the cursor or robotic arm to

complete tasks in a shorter time and get closer to the target.

This paper is organized as follows: Section II introduces

the SSVEP experiment and the proposed method. Section III

Fig. 2. The simulation interface of the eight-target SSVEP-based BCI
system. The frequency and maximal brightness were displayed for each visual
stimulus. The workspace for the random target and the cursor was represented
by a rectangle with white edges. The red circle is the target and the white
one is the cursor.

presents the experimental results. The discussion and conclu-

sion are shown in Sections IV and V, respectively.

II. METHODS AND MATERIALS

A. Experimental Environment

Fig. 1 showed the experimental setup of the SSVEP-based

BCI system for robotic arm control. The computer screen

displayed the stimulation interface, which includes flickers,

the target, and the cursor workplace. The robotic arm and its

workspace were located at the right hand of the subject. The

experimental environment was detailed as follows:

1) Participants: Ten healthy subjects (five females and

five males, mean age: twenty-eight years) volunteered for the

experiment in this study. All subjects had normal or corrected-

to-normal vision. The experiment has been approved by the

Faculty Research Ethics Committee of the University of Leeds.

Each participant read and signed an informed consent form.

2) Simulation Interface: The stimulation interface was

shown in Fig. 2. There are eight stimuli on a 23.6-inch LCD

monitor with a resolution of 1920× 1080 pixels and a refresh

rate of 60 Hz. Two adjacent stimuli have the same frequency

but different brightnesses. For instance, the top two stimuli

flashed at 7 Hz, corresponding to upward movements. The

maximum brightnesses were set at 255 and 180, respectively.

The right, bottom, and left stimuli flickered at 8, 9, and 12 Hz,

respectively. The size of the stimulus is 210×210 pixels. The

rectangle with white edges is 1060×620 pixels in size. The red

circle (radius: 25 pixels) and the white one (radius: 15 pixels)

are the target and the cursor. The interface was developed in

MATLAB using the Psychophysics Toolbox Version 3 [27].

3) Signal Acquisition: The data was recorded using equip-

ment from g.tec medical engineering GmbH, and it was

sampled at a rate of 512 Hz using the g.USB amplifier. Nine

electrodes, i.e., Pz, PO3, POz, PO4, PO7, O1, Oz, O2, and

PO8, in the parietal and occipital areas were selected. The

ground electrode was placed over FPz, and the reference

electrode was positioned on the right earlobe.

4) Robotic Arm: The UR5 robotic arm (Universal Robots)

was employed in this study. Its maximum reaching radius is

850 mm. The workspace for the UR5 robotic arm was set up
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with a whiteboard positioned directly in front of the robot. It

provides a designated horizontal area (803 mm × 470 mm) for

the arm’s actions and operations. The participants were asked

to control the robotic arm to perform reaching tasks.

B. Experimental Protocol

1) Offline: For each subject, the experiment included four

blocks, and each block contained eight trials corresponding

to eight stimuli. Each trial began with a 2 s target cue

(a red square). After the cue, all targets flickered for 7 s

simultaneously. During the experiment, the subject sat in a

comfortable chair in a dimly lit and quiet room. The viewing

distance from the computer screen was set at 60 cm. The

subject was asked to focus on the stimulus and avoid eye

movement. The subject can take a rest between two blocks.

2) Online: The online experiments include single- and

multi-target reaching tasks. In the single-target reaching ex-

periment, each subject should complete eight trials. In each

trial, the target was generated randomly within the cursor’s

workspace. There is a one-to-one mapping between the target

position in the cursor’s workspace and a specific location in the

robotic arm’s workspace. The subject should move the cursor

to reach the target by focusing on different visual stimuli.

Meanwhile, the cursor velocity was transformed and then sent

to the robotic arm, so the robotic arm can map the cursor’s

movement in an enlarged workspace. Therefore, subjects were

not required to switch their eyes between the stimulus and the

robotic arm. Fig. 3 showed the diagram of the proposed robotic

arm velocity modulation method in the SSVEP-based BCI.

The basic rule for governing reaching tasks is that the

cursor/robotic arm should move quickly when it is far from

the target and slow down as it approaches. It ensures that the

cursor/robotic arm approaches the target with greater precision

within a shorter duration. Hence, the subject should focus on

the lighter flicker to move the cursor/robotic arm faster while

focusing on the darker flicker to move it slower. When the

distance between the centers of the cursor and the target is

consistently below a certain value for four consecutive times,

and the trial time is within 40 s, the target is considered to

be hit successfully. Otherwise, the trial fails. The distance was

set to 30 pixels. Two other control methods were employed

for performance comparison. The comparing methods would

be described in the next subsection. In each comparative

experiment, the target position is the same. Therefore, each

subject should finish 24 trials in the single-target reaching task.

In the multi-target reaching task, the subject should reach

three randomly generated targets successively within 200 s.

After successfully hitting a target, the next target occurs

automatically. Each participant was required to complete three

reaching tasks using the proposed method along with two

comparative control methods, for a total of nine trials.

C. Data Pre-processing

Since the effect of visual latency in the human visual

system, the data was extracted in [0.14 (0.14 + d)]s, where d
was the data length for performance analysis. The data were

filtered by a Butterworth band-pass filter (5–60 Hz) and a

Fig. 3. Diagram of the proposed SSVEP-based BCI system for robotic arm
velocity control.

Fig. 4. The detailed framework of the proposed velocity modulation process
for robotic arm control in the SSVEP-based BCI.

notch filter (50 Hz). The band-pass range is determined by

the visual stimulus frequency and the number of harmonics in

CCA.

D. SSVEP-based BCI Controlled Robotic Platform with Ve-

locity Modulation

A stimulus brightness-based velocity modulation method

was presented for robotic arm control in the SSVEP-based

BCI. The framework, as shown in Fig. 4, included two

parts: offline and online experiments. The offline experiment

includes data acquisition, feature extraction, and stimulus

brightness-based speed modulation. In the online experiment,

the velocity of the cursor/robotic arm was finally determined

by the speed function trained in the offline and historical ve-

locity. The data acquisition was described in previous sections.

Subsequent content will explain the other modules in detail.

1) Feature Extraction: Suppose that X ∈ R
Nc×Ns rep-

resents the two-dimensional SSVEP signal from the offline

experiment. Nc, and Ns are the number of channels and

samples, respectively. SSVEP signals can also be described

as sine-cosine waves, so the reference signal Yi ∈ R
2Nh×Ns

for the i-th stimulus can be artificially constructed as follows:

Yi =















sin(2πfit)
cos(2πfit)

...

sin(2πNhfit)
cos(2πNhfit)















, t = [1/Fs, 2/Fs, ..., Ns/Fs] (1)
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where fi, Nh, and Fs refer to the frequency of the stimulus,

the number of harmonics, and the sampling rate, respectively.

In this study, the number of harmonics was set to five.

This study used canonical correlation analysis (CCA) for

feature construction and recognition. CCA finds two spatial

filters wi ∈ R
Nc×1 and vi ∈ R

2Nh×1 to maximize the

correlation between linear projections wT
i X and vT

i Yi:

ρi = max
wi,vi

E[wT
i XY T

i vi]
√

E[wT
i XXTwi]

√

E[vT
i YiY

T
i vi]

(2)

The correlation coefficient ρi can be calculated between X

and each reference signal Yi, i = 1, 2, ..., Nf . The frequency

of the reference signal with maximal correlation coefficient

is determined as the frequency of X . If the classification is

correct, the maximal correlation coefficient ρ was recorded

for the feature construction. Additionally, the PSD of Xj ∈
R

1×Ns , j = 1, 2, ..., Nc was estimated by periodogram() in

MATLAB. The PSD at the true frequency f for j-th channel

was presented as PSDj(f). The average PSD value α across

all channels was calculated as:

α =
1

Nc

Nc
∑

j=1

PSDj(f) (3)

The signals from Nt blocks of the offline experiment were

processed using the aforementioned procedure.

2) Stimulus Brightness-based Speed Function: As illus-

trated in Fig. 4, the offline signals were divided into two sets.

Specifically, (Nt−1) data blocks were used to train conditional

probability density functions, and one block served as an

evaluation dataset to fine-tune the model’s hyperparameters.

A sliding time window with a step of 0.5 s was employed to

divide the signals into multiple epochs. In the (Nt−1) blocks,

ρ and α were further divided into two sets based on whether

they were obtained from high- or low-brightness flickers:

Φh =

[

ρh,1, ρh,2, ..., ρh,Nh

αh,1, αh,2, ..., αh,Nh

]T

∈ R
Nh×2

Φl =

[

ρl,1, ρl,2, ..., ρl,Nl

αl,1, αl,2, ..., αl,Nl

]T

∈ R
Nl×2

(4)

where Nh and Nl represent the number of trials where

the subject directed their attention toward high- and low-

brightness visual stimuli, respectively. The feature matrices Φh

and Φl are derived from stimuli with high and low brightness.

Suppose that when the subject observed the high and low

brightness stimuli, the corresponding trials were labeled as

Th and Tl. The probability density functions of the feature

matrices for high and low brightness stimuli are denoted as

p(Φ|Th) and p(Φ|Tl). GMM was used to fit Φh and Φl. The

GMM is an efficient probabilistic model capable of building

complex probability distribution functions [28]. Therefore, two

probability distribution functions are expressed as follows:

p(Φ|Th) = p(Φh) =

K
∑

k=1

λkN (Φh|θk)

p(Φ|Tl) = p(Φl) =

K
∑

k=1

ϕkN (Φl|ξk)

(5)

where K is the number of mixture components, λk and ϕk

are the mixture wights subject to the constraints
∑K

k=1
λk = 1

and
∑K

k=1
ϕk = 1. The Gaussian density functions N (Φh)

and N (Φl) are defined by the parameters θk = (µk,Σk)
and ξk = (νk,Γk), where µk and νk are the mean, and

Σk and Γk are the covariance matrices. The GMM param-

eters, i.e., λk, ηk,µk,Σk,νk, and Γk, were estimated by the

Expectation-Maximization (EM) algorithm in MATLAB.

The left-one block was used to determine hyperparameters.

Specifically, each trial from the left block was analyzed to form

the feature vector φ̂ = [ρ̂ α̂]. Bayesian inference was used to

compute the posterior probabilities, indicating the trial was

obtained by observing a high and low brightness stimulus:

P (Th|φ̂) =
p(φ̂|Th)P (Th)

p(φ̂|Th)P (Th) + p(φ̂|Tl)P (Tl)

P (Tl|φ̂) =
p(φ̂|Tl)P (Tl)

p(φ̂|Th)P (Th) + p(φ̂|Tl)P (Tl)

(6)

where P (Th) and P (Tl) are prior probabilities of high and low

brightness stimulus. They are both set to 0.5. The difference

between two posterior probabilities is calculated as follows:

d = P (Th|φ̂)− P (Tl|φ̂) (7)

Subsequently, d is compared with a threshold σ:

L(φ̂) =

{

Th, d > σ

Tl, otherwise
(8)

where L(φ̂) is the predicted high/low brightness label of φ̂.

L(φ̂) would be compared with the true brightness label of φ̂. If

they are equal, it indicates that the above process successfully

recognized the brightness label of the SSVEP trial. The ratio

of successfully predicted trials to total trials in the left block is

defined as Acc. The grid-search method was used to determine

optimal values for K and σ via calculation of Acc. The K and

σ ranges are specified as [1, 4] and [-0.5, 0.5], respectively. An

exhaustive search was conducted for the K with an interval

of 1 and for σ with an interval of 0.1. The values that yielded

the highest Acc were chosen as optimal values for K and σ.

The speed range of the cursor is set to [vl, vh], so the middle

speed is vm = vl+vh
2

. The brain-actuated speed function based

on the brightness label is represented as follows:

v =











fl(d), d < σ

vm, d = σ

fh(d), d > σ

(9)

where fl(·) and fh(·) were obtained by polyfit() in MATLAB.

For fl(·), polyfit fits a polynomial of degree three to [−1, vl]
and [σ, vm]. For fh(·), polyfit fits a same degree polynomial

to [σ, vm] and [1, vh]. vl = 18, vh = 36 in this study.

3) Velocity Determination: In the online experiment, the

feature of signal χ ∈ R
Nc×Ns was extracted as [ρ̂, α̂].

Following the above process, χ can be classified as the high

or low brightness stimulus based on the posterior probability

difference d̂ in (8). Subsequently, the brain-actuated speed v
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is obtained using (9). So the two-dimensional velocity vector

vd can be determined by the speed and recognition result:

vd = [vx vy] =



















[0, −v], fd = 1

[v, 0], fd = 2

[0, v], fd = 3

[−v, 0], fd = 4

(10)

where fd is the predicted class of χ. fd would be compared

with the recognition result of the last trial f ′

d. The final velocity

vector of cursor v̂c can be determined as follows:

v̂c =

{

vd, fd = f ′

d

v̂′

c −
v̂
′

c

4
+ vd, fd ̸= f ′

d

(11)

where v̂′

c is the cursor’s velocity at the last moment. The cursor

moves at a velocity of v̂c for a duration of 0.5 s. Subsequently,

the robotic arm’s velocity v̂a can be expressed proportionally:

vax =
−Wh × v̂c(2)

wh

vay =
−Ww × v̂c(1)

ww

(12)

where Wh and Ww are the height and weight of the robotic

arm’s workspace, respectively. wh and ww are the height and

weight of the cursor’s workspace.

Based on the cursor’s and target’s positions, the subject ad-

justed the speed and direction via the stimulus’s brightness and

frequencies, respectively. The distance between their centers

was calculated for each time duration. If the distance is less

than 30 pixels for four consecutive instances within 40 s, it is

considered a successful hit.

E. Velocity Control Strategies for Comparison

Two additional methods were compared with the proposed

method. The first method is discrete velocity (DV) control,

which is commonly utilized in SSVEP-based BCIs for con-

trolling robots [14], [15]. The speed is a constant value

vcons, and its direction depends on the recognition result.

The second method, named discrete attenuated velocity (DAV)

control, incorporates velocity attenuation in (11) based on the

configuration of the DV method. It shares the same setting

as the proposed method. The only difference is that it does

not include the proposed SSVEP-actuated velocity modulation.

Given that DV and DAV methods do not consider the bright-

ness factor, only high-brightness stimuli were used for a fair

comparison. Therefore, vcons is derived by the d obtained from

high brightness stimuli. Specifically, the fitdist() function was

used to fit these values, and consequently, the mean value dm
was obtained. Therefore, vcons can be expressed as follows:

vcons = fh(d̂m) (13)

To ensure a fair comparison, vcons is not merely equivalent

to vm, but rather obtained through the above formula. Besides,

the two comparison methods also employ the sliding window,

the same as the proposed method.
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Fig. 5. (a) Feature distribution of high- and low- brightness stimuli, and (b)
brightness classification accuracy of each subject.
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Fig. 6. The Euclidean distance between the robotic arms’ positions projected
by the cursor’s movements and its actual arrival positions in single-target
reaching tasks. The scatter points refer to the Euclidean distances provided
by different subjects.

TABLE I
AVERAGE DISTANCE OF THE LAST FOUR POSITIONS AMONG THREE

METHODS IN THE SINGLE-TARGET REACHING TASK

Subject index

Average distance across tasks (pixels)

DV control DAV control The proposed method

Subject 1 22.10 22.42 15.52

Subject 2 18.55 20.48 15.95

Subject 3 17.46 19.30 15.77

Subject 4 16.80 19.40 16.36

Subject 5 18.78 21.79 16.72

Subject 6 20.16 20.48 16.36

Subject 7 19.53 19.50 16.33

Subject 8 16.37 16.10 14.42

Subject 9 18.91 19.28 16.93

Subject 10 18.39 16.96 14.33

Average 18.70 19.57 15.87
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Fig. 7. (a) Cursor and (b) robotic arm movements generated by the three methods in a single-target reaching task. Each circle represents a movement. The
interval between two circles represents the distance covered by two consecutive movements.

0 5 10 15 20 25 30
0

10

20

30

40

Time (s)

B
ra

in
-a

c
tu

a
te

d

s
p

e
e

d
s

(p
ix

e
l/

s
)

The propoed method

DAV control

DV control

(a)

5 10 15 20 25 30

-40

-20

0

20

40

60

Time (s)

H
o

ri
z
o

n
ta

l
v

e
lo

c
it

y
(p

ix
e

l/
s

) The propoed method

DAV control

DV control

(b)

5 10 15 20 25 30

-40

-20

0

20

40

Time (s)

V
e

rt
ic

a
l

v
e

lo
c

it
y

(p
ix

e
l/

s
)

(c)

Fig. 8. (a) The brain-actuated speeds, (b) the horizontal velocity, and (c) the vertical velocity generated by the proposed method, DAV control, and DV
control in a single-target reaching task.

Fig. 9. Robotic arm movements in a single-target reaching task generated by the proposed method. The green circle represents the center of the robotic arm,
and the red cross denotes the center of the target.

III. RESULTS

A. Offline Experiment Analysis

Fig. 5(a) displays the feature distribution of high- and

low-brightness visual stimuli for the fifth subject. The x- and

y-axes represent the PSD value and correlation coefficients,

respectively. The scatter plots reveal distinct feature distribu-

tions for the two kinds of stimuli. Specifically, high-brightness

stimuli generally exhibit higher PSD values and correlation

coefficients. Fig. 5(b) presents the classification accuracy of

high- and low-brightness stimuli. The graph displays the

accuracy for each subject, along with the average value (i.e.,

69.1%). Notably, the classification accuracy for each subject

is within an acceptable range.

B. Single-target Reaching Task Performance Evaluation

Fig. 6 showed the Euclidean distance between the robotic

arm’s positions projected by the cursor and its actual arrival

positions for the three methods. The scatters indicated the

average distance across tasks for each subject. The Euclidean

distance can also be interpreted as the tracking error of the

robotic arm in following the cursor’s movements. The numeric

values were within an acceptable range, i.e., [0.044 0.10] for

the proposed method, [0.050 0.22] for DAV control, and [0.063

0.36] for DV control. It indicated that the robotic arm largely

followed the cursor’s movements. Additionally, Fig. 6 demon-

strates that the proposed method resulted in improved accuracy

of the robotic arm in following the projected positions for most

subjects. The average Euclidean distances across subjects were

0.067, 0.088, and 0.13 for the three methods, respectively.

Before the experiment, subjects were informed that when

the cursor is far away from the target, they should concentrate

on the high-brightness stimulus to accelerate the cursor/robotic

arm. Therefore, it helps decrease the reaching time. When the

cursor is close to the target, the user should focus on a low-

brightness stimulus to initiate cursor/robotic arm deceleration.
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(a) Reaching time comparison in single-target tasks
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(b) Distance comparison in single-target tasks

Fig. 10. Performance comparison in single-target reaching tasks. The (a)
average reaching time and (b) average distance were compared between the
three methods. The distance was calculated between the centers of the target
and the last cursor. The error bars are the standard error of the mean (SEM).
The asterisks indicate a significant difference between the three methods
obtained by one-way repeated-measures ANOVA (∗: p<0.05, ∗∗: p<0.01,
∗ ∗ ∗: p<0.001, ∗ ∗ ∗∗: p<0.0001).
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(b) Average number of failures

Fig. 11. The (a) average rate of successful deceleration across tasks and (b)
the average number of failures across subjects with different control methods.
The SEM was shown as error envelopes.
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Fig. 12. The Euclidean distance between the robotic arms’ positions projected
by the cursor’s movements and its actual arrival positions in multi-target
reaching tasks. The scatter points refer to the Euclidean distances provided
by different subjects.

This ensures that the cursor gets closer to the target center

or does not deviate too much from its intended position.

Consequently, the shorter distance between the center of the

target position and the center of the cursor’s final position

validates the efficiency of the deceleration process.

Fig. 7 shows the cursor and robotic arm movements in

a single-target reaching task performed by subject 8 using

the three methods. Each circle represents a movement of the

cursor/robotic arm. The interval between two circles represents

the distance covered by two consecutive movements. There-

fore, the density distribution of the dots also reflects velocity

changes. Fig. 7(b) illustrates the actual position of the robotic

arm, which was obtained through the robot sensor feedback.

Fig. 8(a) showed the brain-actuated speeds of the three control

methods. For the DAV and DV control, the constant value was

determined by (13). The proposed method enabled the cursor

to accelerate when it was distant from the target. When the

cursor was tuning, there were a few speed reduction steps.

However, users can achieve acceleration again by focusing

on high-brightness stimuli. Fig. 8(b) and Fig. 8(c) show the

vertical and horizontal velocity comparisons. The proposed

method (blue line) controlled the cursor to initially move

downward, leading to higher vertical velocities. As it turned

to the horizontal, the velocity in this direction also exceeded

that of other methods. Finally, it achieved deceleration in the

last few moments. Overall, this method exhibited a shorter

reaching time compared to other methods. Fig. 9 showed the

robotic arm’s actual movements in the proposed method.

The reaching time of the three methods with various sub-

jects were shown in Fig. 10(a). The values were averaged

across tasks. It illustrated that the proposed method consis-

tently achieved the shortest time for each subject. The reaching

time of the proposed method improved that of DAV control

by 0.56 s-7.25 s and DV control by 3.05 s-8.76 s. The

average reaching time across subjects of the three methods

were 23.37 s, 27.75 s, and 29.72 s, respectively. A one-

way repeated-measures ANOVA was conducted to explore

the similarity of reaching time across methods. The statisti-

cal results revealed significant differences in reaching time

among the methods for most subjects. Additionally, Fig. 10(b)

illustrated the distance between the centers of the target and

the last cursor position for the three methods. The results

indicated that the cursor controlled by the proposed method

demonstrated greater proximity to the target across tasks. For

example, the distance of the proposed method increased DAV

control by 4.84 to 13.10 pixels and DV control by 4.96 to

14.91 pixels. The results of the statistical analysis indicated

significant differences among the methods for each subject.

The difference is particularly pronounced for subject 1 and

subject 5, with a highly significant p-value (P<0.0001).

The rate of successful deceleration from the proposed

method was shown in Fig. 11(a). It was calculated based on

whether its speeds in the last four steps were lower than

those in the DV/DAV methods. The values were averaged

across tasks. The results revealed that as the cursor/robotic arm

approached the target, most subjects completed successful de-

celerations. For example, subjects 1, 2, and 8 achieved success

rates of 100%, 93.75%, and 90.62%, respectively. The average
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rate across subjects was 87.5%. It further demonstrated the ef-

ficacy of stimulus brightness-based velocity control. TABLE.I

displayed the average distances across tasks for the last four

positions. The average distances across subjects of the three

methods were 15.87, 19.57, and 18.70 pixels, respectively.

The compared methods achieved similar performance, while

the proposed method generally provided the shortest distances.

The results indicated that when utilizing the proposed method,

the cursor tended to get closer or avoid excessive misses in

the last four steps. The number of failures before the subject

successfully conducted each task was counted in Fig. 11(b).

The values were summed across tasks and averaged across

subjects. The results demonstrated that the proposed method

exhibits fewer failures, primarily due to its velocity control,

which allows it to reach the target within a limited time.

C. Multi-target Reaching Task Performance Evaluation

Fig. 12 shows the Euclidean distance between the projected

positions of the robotic arm based on cursor movements and its

actual arrival positions for the three methods. It can represent

the cumulative tracking error when the robotic arm moves with

the cursor. The error ranges exhibited by different subjects are

[0.11 0.35] for the proposed method, [0.25 0.60] for the DAV

control, and [0.26 0.59] for the DV control, respectively. The

proposed method provides relatively small tracking errors for

most subjects. It can be attributed to the fact that the velocity

direction of the robotic arm does not change suddenly like

in DV control, resulting in a smoother trajectory. Besides, it

provides a shorter tracking time compared to DAV control.

Fig. 13 shows the cursor and robotic arm movements

generated by the three methods in a multi-target reaching

task of subject 6. Three targets were generated randomly.

The targets remain consistent across different methods for fair

comparisons. Fig. 14(a) displayed the brain-actuated speeds of

the methods. DAV and DV methods controlled the cursor or

robotic arm with a constant speed regardless of distance from

the target. The speed of the proposed method was subject-

driven and relied on distance. For example, since the first target

was near the cursor’s origin, the cursor accelerated briefly and

then approached the target at a slower speed. The speeds of

the last four steps were marked in red. The third target was

far away from the second target, so the cursor experienced a

long acceleration period and then decelerated as it approached

the target. The reaching time of the proposed method (74.82 s)

was shorter than others, i.e., DAV control: 88.71 s; DV control:

99.45 s. Fig. 14(b) and Fig. 14(c) showed the horizontal and

vertical velocities, which offer a more comprehensive view of

velocity changes for each method.

The reaching time comparisons of multi-target reaching

tasks among these methods were shown in TABLE. II. The

proposed method consistently achieved the shortest reaching

time. For each multi-target trial, three single tasks were in-

cluded. To further evaluate its performance, Fig. 15 presented

the reaching time and distance comparisons for each single

task. The values were averaged across tasks. The results

show that the proposed method provided the shortest reaching

time and distance compared with other methods. The average

TABLE II
AVERAGE REACHING TIME OF THREE METHODS IN MULTI-TARGET

REACHING TASKS

Subject index

Average reaching time across trials (s)

DV control DAV control The proposed method

Subject 1 143.34 81.69 76.93

Subject 2 148.33 110.98 92.17

Subject 3 160.49 104.78 82.85

Subject 4 150.80 111.42 87.08

Subject 5 159.27 124.75 90.28

Subject 6 102.94 126.07 80.65

Subject 7 135.90 91.68 78.53

Subject 8 149.32 121.92 104.61

Subject 9 135.78 115.29 86.20

Subject 10 128.51 88.35 73.35

Average 141.47 107.70 85.27

reaching time across different subjects of the three methods

were 28.34 s, 35.81 s, and 47.07 s, respectively. In addition,

the average distances between the final position of the cursor

and the target were 16.78, 21.64, and 23.60 pixels for the

three methods, respectively. To investigate the similarity of the

average reaching time and distance across different methods,

a one-way repeated-measures ANOVA was conducted. The

statistical analysis revealed significant differences in both per-

formance indicators among these methods for most subjects.

The average distances across tasks for the last four positions

were given in TABLE.III. The results indicated that the

proposed method generally achieved the shortest distance. The

average distances across subjects were 19.20, 17.95, and 16.62

pixels, respectively. The average success rate of deceleration

across tasks was shown in Fig. 16(a). Most subjects achieved

a high rate of successful deceleration. The average rate across

subjects was 76.39%. The numbers of failed trials of the

three methods were shown in Fig. 16(b). The figure indicated

that subjects encountered fewer failures when utilizing the

proposed method to control the cursor/robotic arm.

IV. DISCUSSION

A. Model’s Performance

Currently, most brain-controlled robotic platforms use dis-

crete movement commands and constant velocity [29]. Studies

involving velocity modulation explored the effects of fac-

tors, such as attention, distance, and frequency [20], [21],

[23]. Differently, this study focused on stimulus brightness-

based velocity modulation. The proposed method was used

to control the cursor and robotic arm simultaneously to track

the randomly generated target. The velocities in Fig. 8 and

Fig. 14 both depicted that the proposed method achieved

acceleration as the cursor was far away from the target and

deceleration when their distance was small. The acceleration

process helped reach the target more quickly. For example,

the reaching time of the proposed method, DAV control, and

DV control were 74.82 s, 88.71 s, and 99.45 s in Fig. 14. The
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Fig. 13. (a) Cursor and (b) robotic arm movements generated by the proposed method, DAV control, and DV control in a multi-target reaching task. Each
circle represents a movement. The interval between two circles represents the distance covered by two consecutive movements.

0 50 100
20

25

30

35

40

45

Time (s)

B
ra

in
-a

c
tu

a
te

d

s
p

e
e

d
s

(p
ix

e
l/

s
)

The propoed method
(--: velocities of the last four steps for each target)

DAV control

DV control

(a)

30 60 90

-60

-40

-20

0

20

40

60

Time (s)

H
o

ri
z
o

n
ta

l
v

e
lo

c
it

y
(p

ix
e

l/
s

)

The propoed method

DV control

DAV control

(b)

30 60 90

-60

-40

-20

0

20

40

60

Time (s)V
e

rt
ic

a
l

v
e

lo
c

it
y

(p
ix

e
l/

s
)

(c)

Fig. 14. (a) The brain-actuated speeds (b) the horizontal velocity, and (c) the vertical velocity generated by the proposed method, DAV control, and DV
control in a multi-target reaching task. The red short lines in (a) refer to the speed of the last four steps for each target.
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(a) Reaching time comparison in multi-target reaching tasks
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(b) Distance comparison in multi-target reaching tasks

Fig. 15. Performance comparison in multi-target reaching tasks. The (a)
average reaching time and (b) average distance were compared between the
three methods. The distance was calculated between the centers of the target
and the last cursor position. The error bars represent SEM. The asterisks
indicate a significant difference between the three methods obtained by one-
way repeated-measures ANOVA (∗: p<0.05, ∗∗: p<0.01, ∗ ∗ ∗: p<0.001).

TABLE III
AVERAGE DISTANCE OF THE LAST FOUR POSITIONS AMONG THREE

METHODS IN MULTI-TARGET REACHING TASKS

Subject index

Average distance across tasks (pixels)

DV control DAV control The proposed method

Subject 1 19.71 17.04 18.64

Subject 2 20.15 17.63 16.13

Subject 3 20.17 19.203 16.15

Subject 4 19.64 16.78 15.62

Subject 5 18.31 17.80 16.48

Subject 6 18.38 19.36 16.86

Subject 7 20.19 17.32 16.57

Subject 8 18.07 16.20 18.25

Subject 9 18.42 20.05 16.47

Subject 10 18.91 18.15 14.98

Average 19.20 17.95 16.62

deceleration process assisted the robotic arm in getting closer

to the target or decreasing overshooting. For instance, the DV

method exhibited a shorter distance (21.84 versus 24.10 pixels)

between the cursor and the target when it initially entered the

third hit area (i.e., the red circle) in Fig. 13. However, the

cursor controlled by the DV method gradually moved away

from the target due to the fixed speed, increasing the distance

over time (22.90 versus 17.65 pixels).

In the single-target task, the cursor’s maximum distance to

the target is 840 pixels. The slowest DV method would reach
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Fig. 16. The (a) average success rate of deceleration across tasks and (b)
average number of failures across various subjects with different control
methods. The SEM was shown as error envelopes.

this position in about 32 s if there were no misclassifications.

However, considering the occurrence of misclassifications, the

task duration is set to 40 s to allow for extra correction

time. For each multi-target reaching task, there are three

single-reaching tasks. The first task is the same as the single-

target reaching task, while in the other two tasks, the cursor

starts away from the center, doubling the furthest distance.

Consequently, the total duration for the multi-target reaching

task is calculated to be 200 s.

B. Velocity Modulation Design

As described in (11), the velocity determination in the

proposed method considered previous moment information

when the classification result changed. The reasons are as

follows. Firstly, occasional changes in velocity direction may

be misclassified for various reasons, such as user fatigue and

background noise. The proposed method preserved a part of

the speed in the previous direction and then combined it with

the speed in the new direction to determine the final movement

of the cursor/robotic arm. If the classification was wrong, the

proposed method can move toward the target while adjusting

for the error. If the same direction was obtained again, it was

considered the subject’s intentional behavior, and the previous

velocity would be overwritten without keeping the previous

information. The DV method lengthens the experiment time

since it is limited to adjusting erroneous directions individually

and cannot simultaneously move toward the target. Secondly,

discrete changes in direction have adverse effects on practical

implementation. The robotic arm will experience mechanical

stress and exhibit jerky movements. As shown in Fig. 6 and

Fig. 12, the DV control method produced a larger tracking

error in two kinds of reaching tasks with average values across

subjects of 0.13 and 0.39. In comparison, the proposed method

achieved lower tracking errors with average values of 0.067

and 0.23. Rapid, discrete direction changes cause discomfort

when users conduct reaching tasks assisted by the robotic arm,

especially for individuals with mobility limitations or during

rehabilitation exercises. The proposed method allows smooth

movements of the robotic arm.

Compared to the DAV method, the proposed stimulus

brightness-based velocity modulation saves time in reaching

tasks. The protocol also reflects the subjects’ practical be-

haviors. While observing a distant object, individuals tend to

increase their speed, whereas when nearing the object, they

tend to slow down. It can also improve subjects’ motiva-

tion and participation in conducting various activities, such

as assistance and rehabilitation. Intentional participation is

important to enhance brain plasticity, thereby increasing the

chances of motor recovery [9].

In this study, a third-order polynomial was used to fit the

speed function. The curve demonstrates an S-shaped behavior

as the posterior probability difference changes. It is character-

ized by an initial increase, followed by a smooth transitional

stage, and finally an increase. This indicates that the model

outputs at higher speeds when the probability of the SSVEP

signal being excited by a high-brightness stimulus significantly

exceeds that of a low-brightness stimulus. Otherwise, the

model outputs at a slower speed. As the probability difference

approaches the training threshold, it becomes challenging to

determine the signal evoked by which brightness stimulus.

To address this uncertainty, a middle speed should be as-

signed, corresponding to a third-order polynomial that features

a smooth transitional stage in the middle. Meanwhile, this

setting aligns with practical scenarios. In Fig. 5(b), the average

brightness classification accuracy was 69.1% across subjects.

Therefore, assigning speeds around the median aims to strike

a balance in cases where the model’s uncertainty arises due to

the proximity of probabilities to the threshold.

C. Feature Extraction

In this study, the correlation coefficient and PSD value were

integrated into the feature vector. The correlation coefficient

was provided by the CCA recognition method. One reason

for choosing CCA is due to its simple implementation and

low computational complexity [30]. Additionally, it offered

sufficient features to train probability density functions and

fine-tune hyperparameters in the offline experiment via the

sliding window. It also showed satisfactory performance in the

offline experiment’s four-class problem. The average recogni-

tion accuracy across subjects is 90.5%. Thus, it can be a valid

choice for the online experiment.

D. Future Work

Although the proposed method achieved stimulus

brightness-based velocity control, there are certain directions

for further improvement. This study scaled down the robotic

arm’s workspace and established the cursor’s workspace

on the computer screen. It may be inconvenient for the

subject to focus on the stimulation interface while performing

rehabilitation exercises. To address it, future work could

involve integrating AR glasses [18] to provide a more

user-friendly rehabilitation scenario. The AR glasses could

simultaneously display visual stimulation, the cursor, and

the target directly in the subject’s field of view. Secondly,

SSVEP-based BCI systems require the subject to maintain

attention on the light source, which potentially leads to visual

fatigue [13]. Some research has reported that high-frequency

stimuli can reduce visual fatigue and discomfort [17].

Additionally, hybrid BCIs present promising opportunities to

address this issue [31]. For instance, the combination of eye

tracking-based assistive technologies with the SSVEP system

has been explored for high-speed speller implementation,

aiming to overcome fatigue and tiredness [32].
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V. CONCLUSION

In this study, a stimulus brightness-based velocity mod-

ulation method was proposed for robotic arm control in

the SSVEP-based BCI system. The flickers with different

frequencies and brightnesses were employed to achieve ve-

locity modulation. The feature vector was constructed from

the correlation coefficient and PSD. The GMM model and

Bayesian inference were then used to calculate the posterior

probabilities that the signal came from a high- and low-

brightness flicker. The speed function was designed using

the posterior probability difference, and the velocity from the

previous moment was incorporated to derive the final direction

and speed. For performance comparison, two velocity control

methods were included. The effectiveness and feasibility of the

proposed method were demonstrated via online experiments

involving single- and multi-target reaching tasks.
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