23 research outputs found

    Sensitivitätsanalyse und robustes Prozessdesign pharmazeutischer Herstellungsprozesse

    Get PDF
    The existence of parameter uncertainties(PU) limits model-based process design techniques. It also hinders the modernization of pharmaceutical manufacturing processes, which is necessitated for intensified market competition and Quality by Design (QbD) principles. Thus, in this thesis, proper approaches are proposed for efficient and effective sensitivity analysis and robust design of pharmaceutical processes. Moreover, the point estimate method (PEM) and polynomial chaos expansion (PCE) are further implemented for uncertainty propagation and quantification (UQ) in the proposed approaches. Global sensitivity analysis (GSA) provides quantitative measures on the influence of PU on process outputs over the entire parameter domain. Two GSA techniques are presented in detail and computed with the PCE. The results from case studies show that GSA is able to quantify the heterogeneity of the information in PU and model structure and parameter dependencies affects significantly the final GSA result as well as output variation. Frameworks for robust process design are introduced to alleviate the adverse effect of PU on process performance. The first robust design framework is developed based on the PEM. The proposed approach has high computational efficiency and is able to take parameter dependencies into account. Then, a novel approach, in which the Gaussian mixture distribution (GMD) concept is combined with PEM, is proposed to handle non-Gaussian distribution. The resulting GMD-PEM concept provides a better trade-off between process efficiency and probability of constraint violations than other approaches. The second robust design framework is based on the iterative back-off strategy and PCE. It provides designs with the desired robustness, while the associated computational expense is independent from the optimization problem. The decoupling of optimization and UQ provides the possibility of implementing robust process design to more complex pharmaceutical manufacturing processes with large number of PU. In this thesis, the case studies include unit operations for (bio)chemical synthesis, separation (crystallization) and formulation (freeze-drying), which cover the complete production chain of pharmaceutical manufacturing. Results from the case studies reveal the significant impact of PU on process design. Also they show the efficiency and effectiveness of the proposed frameworks regarding process performance and robustness in the context of QbD.Die pharmazeutische Industrie muss sowohl den gestiegenen Wettbewerbsdruck standhalten als auch die von Regulierungsbehörden geforderte QbD-Initiative (Quality by Design) umsetzen. Modellgestützte Verfahren können einen signifikanten Beitrag leisten, aber Parameterunsicherheiten (PU) erschweren jedoch eine zuverlässige modellgestützte Prozessauslegung. Das Ziel dieser Arbeit ist daher die Erforschung von effizienten Approaches zur Sensitivitätsanalyse und robusten Prozessdesign der pharmazeutische Industrie. Methoden, Point Estimate Method (PEM) und Polynomial Chaos Expansion (PCE), wurde implementiert, um effizient Unsicherheitenquantifizierung (UQ) zu erlauben. Der globalen Sensitivitätsanalyse (GSA) ist eine systematische Quantifizierung von Parameterschwankungen auf die Simulationsergebnisse. Zwei GSA Techniken werden im Detail vorgestellt und an Beispielen demonstriert. Die Ergebnisse zeigen sowohl den Mehrwert der GSA im Kontext des robusten Prozessdesigns als auch die Relevanz zur korrekten Berücksichtigung von Parameterkorrelationen bei der GSA. Um den schädlichen Einfluss von PU auf die modellgestützte Prozessauslegung zusätzlich zu minimieren, wurden weitere Konzepte aus der robusten Optimierung untersucht. Zunächst wurde das erste Konzept basierend auf der PEM entwickelt. Das erste Konzept zeigt einen deutlich reduzierte Rechenaufwand und kann auch die Parameterkorrelationen entsprechend in der robusten Prozessauslegung berücksichtigen. In einem zweiten Schritt wurde ein neuer Ansatz, der die Gauß-Mischverteilung mit der PEM kombiniert, hierzu für nicht normalverteilte PU erfolgreich implementiert. Weiterhin wurde eine iterative Back-off-Strategie erforscht, die auch die PU entsprechend berücksichtigt aber leichte Rechenaufwand zeigt. Durch die Entkoppelung von UQ und Optimierung können wesentlich komplexere pharmazeutische Herstellungsprozesse mit einer hohen Anzahl an PU implementiert werden. Die in dieser Arbeit untersuchten verfahrenstechnische Grundoperationen decken somit einen Großteil der gesamten Produktionskette der pharmazeutischen Herstellung ab. Die Ergebnisse der untersuchten Beispiele zeigen deutlich den Einfluss von PU auf das modellgestützte Prozessdesign auf. Mithilfe der vorgeschlagenen Approaches können die PU effektiv und effizient bei einer optimalen Balance von Rechenaufwand und der geforderten Zuverlässigkeit ganz im QbD-Sinne berücksichtigt werden

    Global Sensitivity Methods for Design of Experiments in Lithium-ion Battery Context

    Full text link
    Battery management systems may rely on mathematical models to provide higher performance than standard charging protocols. Electrochemical models allow us to capture the phenomena occurring inside a lithium-ion cell and therefore, could be the best model choice. However, to be of practical value, they require reliable model parameters. Uncertainty quantification and optimal experimental design concepts are essential tools for identifying systems and estimating parameters precisely. Approximation errors in uncertainty quantification result in sub-optimal experimental designs and consequently, less-informative data, and higher parameter unreliability. In this work, we propose a highly efficient design of experiment method based on global parameter sensitivities. This novel concept is applied to the single-particle model with electrolyte and thermal dynamics (SPMeT), a well-known electrochemical model for lithium-ion cells. The proposed method avoids the simplifying assumption of output-parameter linearization (i.e., local parameter sensitivities) used in conventional Fisher information matrix-based experimental design strategies. Thus, the optimized current input profile results in experimental data of higher information content and in turn, in more precise parameter estimates.Comment: Accepted for 21st IFAC World Congres

    Toward a Comprehensive and Efficient Robust Optimization Framework for (Bio)chemical Processes

    Get PDF

    Robust Process Design in Pharmaceutical Manufacturing under Batch-to-Batch Variation

    Get PDF
    Model-based concepts have been proven to be beneficial in pharmaceutical manufacturing, thus contributing to low costs and high quality standards. However, model parameters are derived from imperfect, noisy measurement data, which result in uncertain parameter estimates and sub-optimal process design concepts. In the last two decades, various methods have been proposed for dealing with parameter uncertainties in model-based process design. Most concepts for robustification, however, ignore the batch-to-batch variations that are common in pharmaceutical manufacturing processes. In this work, a probability-box robust process design concept is proposed. Batch-to-batch variations were considered to be imprecise parameter uncertainties, and modeled as probability-boxes accordingly. The point estimate method was combined with the back-off approach for efficient uncertainty propagation and robust process design. The novel robustification concept was applied to a freeze-drying process. Optimal shelf temperature and chamber pressure profiles are presented for the robust process design under batch-to-batch variation

    The Impact of Global Sensitivities and Design Measures in Model-Based Optimal Experimental Design

    Get PDF
    In the field of chemical engineering, mathematical models have been proven to be an indispensable tool for process analysis, process design, and condition monitoring. To gain the most benefit from model-based approaches, the implemented mathematical models have to be based on sound principles, and they need to be calibrated to the process under study with suitable model parameter estimates. Often, the model parameters identified by experimental data, however, pose severe uncertainties leading to incorrect or biased inferences. This applies in particular in the field of pharmaceutical manufacturing, where usually the measurement data are limited in quantity and quality when analyzing novel active pharmaceutical ingredients. Optimally designed experiments, in turn, aim to increase the quality of the gathered data in the most efficient way. Any improvement in data quality results in more precise parameter estimates and more reliable model candidates. The applied methods for parameter sensitivity analyses and design criteria are crucial for the effectiveness of the optimal experimental design. In this work, different design measures based on global parameter sensitivities are critically compared with state-of-the-art concepts that follow simplifying linearization principles. The efficient implementation of the proposed sensitivity measures is explicitly addressed to be applicable to complex chemical engineering problems of practical relevance. As a case study, the homogeneous synthesis of 3,4-dihydro-1H-1-benzazepine-2,5-dione, a scaffold for the preparation of various protein kinase inhibitors, is analyzed followed by a more complex model of biochemical reactions. In both studies, the model-based optimal experimental design benefits from global parameter sensitivities combined with proper design measures

    Characterization of a Novel Megabirnavirus from \u3cem\u3eSclerotinia sclerotiorum\u3c/em\u3e Reveals Horizontal Gene Transfer from Single-Stranded RNA Virus to Double-Stranded RNA Virus

    Get PDF
    Mycoviruses have been detected in all major groups of filamentous fungi, and their study represents an important branch of virology. Here, we characterized a novel double-stranded RNA (dsRNA) mycovirus, Sclerotinia sclerotiorum megabirnavirus 1 (SsMBV1), in an apparently hypovirulent strain (SX466) of Sclerotinia sclerotiorum. Two similarly sized dsRNA segments (L1- and L2-dsRNA), the genome of SsMBV1, are packaged in rigid spherical particles purified from strain SX466. The full-length cDNA sequence of L1-dsRNA/SsMBV1 comprises two large open reading frames (ORF1 and ORF2), which encode a putative coat protein and an RNA-dependent RNA polymerase (RdRp), respectively. Phylogenetic analysis of the RdRp domain clearly indicates that SsMBV1 is related to Rosellinia necatrix megabirnavirus 1 (RnMBV1). L2-dsRNA/SsMBV1 comprises two nonoverlapping ORFs (ORFA and ORFB) encoding two hypothetical proteins with unknown functions. The 5′-terminal regions of L1- and L2-dsRNA/SsMBV1 share strictly conserved sequences and form stable stem-loop structures. Although L2-dsRNA/SsMBV1 is dispensable for replication, genome packaging, and pathogenicity of SsMBV1, it enhances transcript accumulation of L1-dsRNA/SsMBV1 and stability of virus-like particles (VLPs). Interestingly, a conserved papain-like protease domain similar to a multifunctional protein (p29) of Cryphonectria hypovirus 1 was detected in the ORFA-encoded protein of L2-dsRNA/SsMBV1. Phylogenetic analysis based on the protease domain suggests that horizontal gene transfer may have occurred from a single-stranded RNA (ssRNA) virus (hypovirus) to a dsRNA virus, SsMBV1. Our results reveal that SsMBV1 has a slight impact on the fundamental biological characteristics of its host regardless of the presence or absence of L2-dsRNA/SsMBV1. IMPORTANCE Mycoviruses are widespread in all major fungal groups, and they possess diverse genomes of mostly ssRNA and dsRNA and, recently, circular ssDNA. Here, we have characterized a novel dsRNA virus (Sclerotinia sclerotiorum megabirnavirus 1 [SsMBV1]) that was isolated from an apparently hypovirulent strain, SX466, of Sclerotinia sclerotiorum. Although SsMBV1 is phylogenetically related to RnMBV1, SsMBV1 is markedly distinct from other reported megabirnaviruses with two features of VLPs and conserved domains. Our results convincingly showed that SsMBV1 is viable in the absence of L2-dsRNA/SsMBV1 (a potential large satellite-like RNA or genuine genomic virus component). More interestingly, we detected a conserved papain-like protease domain that commonly exists in ssRNA viruses, including members of the families Potyviridae and Hypoviridae. Phylogenetic analysis based on the protease domain suggests that horizontal gene transfer might have occurred from an ssRNA virus to a dsRNA virus, which may provide new insights into the evolutionary history of dsRNA and ssRNA viruses
    corecore