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Abstract: Model-based design principles have received considerable attention in biotechnology and
the chemical industry over the last two decades. However, parameter uncertainties of first-principle
models are critical in model-based design and have led to the development of robustification concepts.
Various strategies have been introduced to solve the robust optimization problem. Most approaches
suffer from either unreasonable computational expense or low approximation accuracy. Moreover,
they are not rigorous and do not consider robust optimization problems where parameter correlation
and equality constraints exist. In this work, we propose a highly efficient framework for solving
robust optimization problems with the so-called point estimation method (PEM). The PEM has
a fair trade-off between computational expense and approximation accuracy and can be easily
extended to problems of parameter correlations. From a statistical point of view, moment-based
methods are used to approximate robust inequality and equality constraints for a robust process
design. We also apply a global sensitivity analysis to further simplify robust optimization problems
with a large number of uncertain parameters. We demonstrate the performance of the proposed
framework with two case studies: (1) designing a heating/cooling profile for the essential part
of a continuous production process; and (2) optimizing the feeding profile for a fed-batch reactor
of the penicillin fermentation process. According to the derived results, the proposed framework
of robust process design addresses uncertainties adequately and scales well with the number of
uncertain parameters. Thus, the described robustification concept should be an ideal candidate for
more complex (bio)chemical problems in model-based design.

Keywords: robust optimization; uncertainty; point estimation method; equality constraints;
parameter correlation

1. Introduction

Intensive competition in the (bio)chemical industry increases the requirements for better process
performance. Thus, model-based tools are frequently applied to design (bio)chemical processes
optimally, i.e., to optimize their performance while satisfying relevant system constraints [1,2].
However, external disturbances and process uncertainties might affect the performance of the plants,
which then would deviate from the expected and simulated process characteristics or even result
in operation failures [3]. The reliability of the designed processes under various conditions and
disturbances is called robustness. Optimization problems that account for process performance and
robustness must be tackled to provide solutions for real plants of industrial relevance.
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The concept of robust optimization (RO) was first proposed by [4] and has been extensively
applied to design upstream synthesis units [5,6] and downstream separation units [3,7] for
bio(chemical) processes. RO concepts can be categorized into three groups: worst-case [7,8],
probability-based [5,6,9] and possibility-based [10]. The worst-case and possibility-based approaches
are a good choice for crude uncertainty expressions, but might lead to conservative results [11].
Probability-based concepts, which include detailed parameter uncertainty information regarding
probability density functions (PDFs), are very relevant and have attracted considerable attention
in the last decade [5,6,11]. However, the probability-based RO requires methods for uncertainty
propagation and quantification (UQ), which pose obvious challenges in computational efficiency and
approximation accuracy. Thus, the credibility and flexibility of the RO approach are determined by the
underlying numerical UQ methods [4,12].

Various UQ methods for RO can be found in the literature. For instance, [13] used traditional
sampling-based methods, i.e., (quasi) Monte Carlo (MC) simulation. Spectral methods, e.g., polynomial
chaos expansion [14,15], have also been extensively used for RO [16–18], because of their fast
convergence. Moreover, the desired statistical information can be calculated analytically. Gaussian
quadrature (GQ), which was developed for solving numerical integration problems [19], is also a
common approach for RO. These methods all have specific merits, but fall short in an essential
aspect: they all suffer from the deficiency of computational expense. In this work, we propose the
point estimate method (PEM) [2] for probability-based RO, because the PEM has superior efficiency
compared to other UQ methods, as illustrated in Figure 1, and provides workable accuracy against
various cubature methods, as concluded by [20,21]. Here, the computational demand (i.e., number of
model evaluations) for different uncertainty quantification methods with the increasing number of
uncertain parameters is illustrated to achieve similar approximation accuracy. The number of model
evaluations for each method is determined based on the literature [15,20,22].
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Figure 1. Computational demand (i.e., number of model evaluations) for different uncertainty
quantification methods with increasing number of uncertain parameters and the same system
complexity to achieve similar approximation accuracy.

The dependencies of parameter uncertainties, which is referred to as parameter dependencies in
the following context, commonly exist in practical applications [23–25], but are generally not taken
into account in RO studies. Recently, this issue has received more attention in the field of sensitivity
analysis [25–27], where parameter correlation has a significant impact on parameter sensitivities and the
resulting probability distributions of the model output [20,28]. Therefore, in this work, we adapted the
PEM by implementing an isoprobabilistic transformation step [29] to include parameters dependencies
properly. Thus, the effect of parameter dependencies on the RO result is investigated and critically
compared with the reference case where parameter dependencies are neglected.

This paper also provides a holistic framework for probability-based RO with the PEM. The objective
function is robustified by using its first and second statistical moments. The multi-objective optimization
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problem is transferred to a single-objective optimization problem by taking the weighted sum of these
moments [5]. Moreover, we distinguish between hard and soft constraints where only the latter case
needs to be robustified. Soft equality constraints might also be relevant in the design of (bio)chemical
processes, but were rarely considered in previous RO studies [30,31]. In this work, we provide a robust
formulation for soft inequality and equality constraints and investigate their effect on the objective
function. With the statistical moments estimated by the PEM, the second and fourth moment methods
introduced by [32] for structural reliability analysis are implemented to approximate the robustified
soft constraints. The fourth moment method has a more rigorous structure than the second moment
method, but requires knowledge about the third and fourth statistical moments, which might be
challenging for the PEM, as the approximation accuracy degrades for higher order statistical moments.
Therefore, we demonstrate and compare the performance of the two methods for approximating the
robust soft inequality constraints. Additionally, the global sensitivity analysis technique [22] is utilized
to obtain a better understanding of the process under study and provide information for simplifying
and constructing the robust optimization problem systematically.

The paper is organized as follows. Section 2 refers to the basics of probability-based RO. The PEM
and its extension to arbitrary and correlated parameters are described in Section 3. Section 4 provides
details about robust inequality and equality constraints and approximation methods. The final
structure of probability-based RO is given in Section 5. The basics of the global sensitivity analysis
are given in Section 6. To demonstrate the performance of the proposed RO framework, two case
studies are thoroughly discussed in Section 7: including a classic jacket tubular reactor and a fed-batch
bioreactor for penicillin fermentation. Conclusions can be found in Section 8.

2. Background of Probability-Based Robust Optimization

This section starts with the problem formulation used throughout the paper and introduces the
general structure of probability-based RO. First-principle models are used to describe physicochemical
mechanisms of (bio)chemical processes mathematically. In the field of process system engineering,
mathematical models typically consist of nonlinear different algebraic equations (DAEs) equal to:

ẋd(t) = gd(x(t), u(t), p), xd(0) = x0, (1)

0 = ga(x(t), u(t), p), (2)

where t ∈ [0, t f ] denotes the time, u ∈ Rnu the control input vector and p ∈ Rnp the time-invariant
parameter vector. x = [xd, xa] ∈ Rnx is the state vector, while xd ∈ Rnxd and xa ∈ Rnxa

are the differential and algebra states, respectively. x0 is the vector of the initial conditions for
the differential states. Furthermore, two types of functions gd : R(nxd+nxa )×nu×np → Rnxd and
ga : R(nxd+nxa )×nu×np → Rnxa are given, which denote the differential vector field and algebraic
expressions of the process model.

Typically, the time-invariant parameters p and initial conditions x0 are not known exactly.
Measurement and process noise give rise to uncertainties in model parameters, which are estimated
through model fitting [2,23,33]. In addition, disturbances from the environment and the accuracy of
the measurement devices result in uncertain initial conditions. As we intend to use random variables
to describe the uncertainties in the parameters and the initial conditions, we define a probability space
(Ω,F , P) with the sample space Ω, σ-algebra F , and the probability measure P. θ = [p(ω), x0(ω)] is
the vector of random variables, which are functions of ω ∈ Ω on the probability space and associated
with continuous PDFs f(θ) = [ f1(θ1), . . . , fnθ

(θnθ
)] and correlation matrix Σ.

Parameter and initial condition uncertainties result in model-based prediction variations,
i.e., the outcome of Equations (1) and (2) must be considered as random variables, as well. Therefore,
nominal (i.e., ignoring given parameter variations) optimal control problems do not give reliable
solutions for realistic processes as a single realization of the uncertain parameters is used [11]. To derive
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reliable solutions for almost all realizations of uncertain parameters, the following RO problem
has to be solved.

Problem 1. Probability-based robust optimization problem

min
x(·),u(·)

E[M(xt f )] + αVar[M(xt f )], (3)

subject to:

ẋd(t) = gd(x(t), u(t), p), (4)

0 = ga(x(t), u(t), p), (5)

xd(0) = x0, (6)

Pr[hnq(x(t), u(t), p) ≥ 0] ≤ εnq, (7)

Pr[heq(x(t), u(t), p) 6= 0] ≤ εeq, (8)

umin ≤ u ≤ umax. (9)

Here, E[·] and Var[·] denote the mean and the variance of the cost function M(xt f ), respectively,
Pr[·] denotes the probability measure, α denotes a scalar weight factor, εnq and εeq are tolerance factors,
[umin,umax] are the upper and lower boundaries for the control input vector and xt f is the state vector
at the end of the time horizontal t f . In detail, M(xt f ) denotes a Mayer objective term that is used for
nominal optimal control problems. Please note that certain reformulations can be made to consider
optimal Lagrange control problems, as well. The two functions hnq : R(nxd+nxa )×nu×np → Rnnq and
heq : R(nxd+nxa )×nu×np → Rneq are used to represent the inequality and equality constraints, which
come from process restrictions, such as temperature limitations. Equations (4) and (5) are the model
equations that are considered as equality constraints as discussed in Section 4.

Problem 1 expresses the general formulation of the RO problem regarding probabilistic
uncertainties. Equation (3) gives the robust form of the objective function M(xt f ), where E[M(xt f )]

and Var[M(xt f )] represent the expected performance and the robustness of the objective function,
respectively. The trade-off between the performance and the robustness is adjusted by the weight
factor α. Equations (7) and (8) give the robust form of the inequality and equality constraints,
respectively. They ensure that the probability of all constraint violations is less than or equal to a certain
tolerance factor that can be adjusted according to given specifications and safety rules. However,
to solve Problem 1 practically, we have to address the following two aspects. First, the estimation
of the probabilities of both constraint violations cannot be solved in closed form, and standard
numerical methods might be computationally demanding. Thus, highly efficient approximation
routines have to be applied to ensure representative results. Second, the robust equality constraints in
Equation (8) are infeasible and render RO insolvable. These two aspects are discussed and addressed
in the following section.

3. Point Estimate Method

The point estimate method is a sample-based and an efficient cubature rule for approximating
n-dimensional integrals [34–36]. It is analogous to the concept of the so-called unscented transformation
presented by [37], which describes the parameter uncertainty with some deterministic sample
points and approximate the statistics of outputs with the corresponding model evaluations, but has
different deterministic sample points, associated weights and higher accuracy [34]. The PEM has been
successfully applied in the field of sensitivity analysis [38] and optimal experimental design [39–41] to
quantify the influence of measurement imperfections on system identification. A brief introduction to
the PEM is given in Section 3.1. The concept of extending the PEM to problems with arbitrary and
correlated parameter uncertainties is presented in Section 3.2.
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3.1. Basics of the Point Estimate Method

The basic principle of the PEM is illustrated in Figure 2. Here, a nonlinear function k(·)
with a two-dimensional parameter [ξ1, ξ2] and one model output y1 is used for demonstration.
We assume that the two parameters have a bivariate standard Gaussian distribution ξ ∼ N (0, I).
The probability distribution of the parameters does not have to be Gaussian and could follow a
uniform, beta distribution or any other parametric distribution; if it is symmetric and independent [41].
First, nine deterministic sample points, i.e., the cross, circle and star points in Figure 2, are generated and
used for function evaluations. Finally, the integral term is approximated by a weighted superposition
of these function evaluations equal to:

∫
Iξ

k(ξ) f (ξ)dξ ≈
np

∑
i=1

wik(ξ
s
i ), (10)

where ξs
i denotes the i-th sample point; nξ and np denote the number of random inputs and sample

points, which are equal to two and nine in this example; wi is a scalar weight factor; and f (ξ) is the
PDF of the uncertain parameters.

Figure 2. Illustration of the point estimation method (PEM) for a nonlinear function y = k(ξ) that has
(A) two random inputs; (B) one model output y1; and (C) the resulting approximations of statistical
moments of y1.

The deterministic sample points used in this work are generated by the first three generator
functions (GF[0], GF[±ϑ], GF[±ϑ,±ϑ]) defined in [34], which leads to an overall number of
np = 2d2 + 1 sample points, where d = nξ = nθ . The specific weight factors are used for
each generator function, which results in the final approximation scheme assuming standard Gaussian
distributions: ∫

Iξ
k(ξ) f (ξ)dξ ≈

w0k(GF[0]) + w1 ∑ k(GF[±ϑ]) + w2 ∑ k(GF[±ϑ,±ϑ]),
(11)

where ϑ =
√

3, w0 = 1 + d2−7d
18 , w1 = 4−d

18 , w2 = 1
36 [38]. With these factors, Equation (11) provides

suitable approximations for the integral of functions with moderate nonlinearities, i.e., system up to
fifth-order [20,34]. Please note that the system with fifth-order means it can be accurately approximated
with the sum of monomials up to order of five. In principle, we can also adapt the PEM to ensure lower
or higher precision, but the proposed setting has the best trade-off between precision and computational
costs [35].

3.2. Sampling Strategy for Independent/Correlated Random Variables of Arbitrary Distributions

As mentioned above, the proposed PEM is applicable only in the case of independent standard
Gaussian distributions describing the parameter uncertainties. For most practical applications,
however, we are confronted with problems of arbitrary and correlated probability distributions.
Therefore, we extend the PEM by following Proposition 1.
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Proposition 1. For two random variables (θ, ξ), where ξ ∼ N (0, I) and θ has an arbitrary distribution and the
function Φ(·) = F−1

θ (Fξ(·)), the following relation for the integral terms of the nonlinear function k(θ) holds [20]:∫
Iθ

k(θ) f (θ)dθ =
∫

Iξ

k(Φ(ξ)) f (ξ)dξ. (12)

Based on Proposition 1, the integral expression with an arbitrary correlation function is
approximated as:

∫
Iθ

k(θ) f (θ)dθ ≈ w0k(Φ(ξ1)) + w1

2d+1

∑
i=2

k(Φ(ξi)) + w2

2d2+1

∑
j=2d+2

k(Φ(ξ j)), (13)

where the samples from the original PEM for ξ are transformed via Φ(·) = F−1
θ (Fξ(·)) to the

corresponding points in θ, which can be directly evaluated with function k(·). The joint cumulative
density function (CDF) Fθ(θ) in Φ(·) is typically unknown in practical applications and derived from
marginal CDFs [F1(θ1), . . . , Fd(θd)] and the correlation matrix Σ ∈ Rd×d for the uncertain parameter θ.
Please note that it is actually infeasible to derive an analytical expression for Fθ(θ) and Φ(·) [20]. Thus,
we introduce Algorithm 1 to transform the samples from ξ to θ numerically. The transformed sample
points can be directly used for the approximation scheme:

∫
Iθ

k(θ) f (θ)dθ ≈ w0k(θ1) + w1

2d+1

∑
i=2

k(θi) + w2

2d2+1

∑
j=2d+2

k(θj). (14)

Algorithm 1 is derived from the Nataf transformation procedure, which is based on
Gaussian-copula [42]. By definition, the Gaussian-copula concept needs only the marginal distributions
and the covariance matrix to approximate multivariate distributions. Technically, the Gaussian-copula
is used for describing multivariate distributions with linear correlation, and thus might lose accuracy
in describing multivariate distributions with non-linear correlations.

Algorithm 1 Sampling for correlated random variables

Initialization: Random variables ξ ∼ N (0, I), I ∈ Rd×d; θ have marginal cumulative density functions
[F1(θ1), . . . , Fd(θd)] and correlation matrix Σ ∈ Rd×d;

1: Sample U = [ξ1, · · · , ξN ] with size of N = 2d2 + 1 from ξ and dimension d from Generator
function GF[·];

2: Cholesky decomposition of Σ = LLT , where L is a lower triangular matrix;
3: Correlate the sample, V = LU;
4: Convert the sample to the corresponding cumulative density W = [F(V1), · · · , F(Vd)]

T ;
5: Transform into sample of θ, [θ1, · · · , θN ] = [F−1

1 (W1), · · · , F−1
d (Wd)]

T .

4. Moment Method for Approximating Robust Inequality and Equality Constraints

In this section, we discuss the details of inequality and equality constraints. In Section 4.1,
we categorize the constraints into two special types, i.e., hard and soft constraints, and discuss the
effects of parameter uncertainties on the constraints. In Sections 4.2 and 4.3, a robust formulation of
soft inequality and soft equality constraints and methods for approximating the robustified expressions
are presented.

4.1. Categorization of the Constraints

There are two types of robust inequality and equality constraints: hard and soft constraints [43].
Hard constraints must be satisfied regardless of uncertainties in the RO. Hard constraints ensure
that optimized results satisfy physical laws. For instance, in Problem 1, equality constraints
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Equations (4) and (5), i.e., the governing equations, are hard constraints as they describe the underlying
(bio)chemical processes and have to be consistently satisfied when assuming deterministic simulation
results. Soft constraints, in turn, do not have to be exactly satisfied under uncertainties. Soft constraints
(e.g., Equations (7) and (8)) are typically imposed by the designer to restrict the design space and
to satisfy additional process specifications. Therefore, soft constraints can be satisfied only in
a probabilistic manner and might occasionally be violated, i.e., an acceptable violation probability
has to be defined for RO. Please note that the performance of the objective function may decrease if
a very low violation probability is required. Soft constraints are considerably affected by parameter
uncertainties and are investigated in the following section.

4.2. Robust Formulation of Soft Inequality Constraints

Soft inequality constraints do not have to be strictly satisfied, but in a probabilistic manner.
Inequality constraints hnq(x(t), u(t), p) ≤ 0 formulated on the probability space are also named
chance constraints [44] and read as:

Pr[hnq(x(t), u(t), p) ≤ 0] ≥ 1− εnq, (15)

where the probability of constraint satisfaction must be higher or equal to 1 − εnq. Please note
that Equation (15) can also be equivalently transformed into Equation (16) when the probability
of a constraint violation is used:

Pr[hnq(x(t), u(t), p) ≥ 0] ≤ εnq. (16)

The probability of constraint violations is frequently estimated by MC simulations. A large
number of samples are drawn from given parameter distributions, and the samples, where the
constraints are violated, are counted. MC simulations are straightforward in implementation but
require a considerable number of CPU-intensive model evaluations. The computational burden might
be prohibitive, especially for the iterative nature of the RO. Moment-based approximation of failure
probabilities has been widely applied in the field of reliability analysis [32], and thus, this method is
used as an alternative concept to approximate the chance constraints in this work. In addition, it takes
the advantage of the proposed PEM for estimating the needed statistical moments.

The basic idea of the moment-based approximation method is to transform the probability
distribution of the constraint functions into some specific distributions, e.g., the standard
normal distribution ξ ∼ N (0, 1) and to obtain the failure probability based on the probability.
Here, the one-dimensional constraint function −hnq(x(t), u(t), p) with a negative sign is abbreviated
as hnq and used in the following. The isoprobabilistic transform given in Proposition 1 is applied to
express the relation between the standard normal distribution and one random variable with given
distribution as:

ξ = F−1
ξ (Fhnq

(hnq)), (17)

where F−1
ξ indicates the inverse CDF of the standard normal distribution and Fhnq

indicates the

CDF of hnq. Based on this transformation, the failure probability of the constraint function hnq is
equivalent to the probability of ξ ≤ F−1

ξ (Fhnq
(0)) as shown in Equation (18). As the CDF of ξ is known

analytically, the failure probability of the constraint function can be determined if F−1
ξ (Fhnq

(0)) is

given. However, the transformation function F−1
ξ (Fhnq

(·)) is typically not available as the CDF of hnq

is unknown in practice. Thus, we aim at transformation rules that are based only on the statistical
moments of hnq [32]:

Pr[hnq(x(t), u(t), p) ≥ 0] = Pr[hnq ≤ 0],

= Pr[ξ ≤ F−1
ξ (Fhnq

(0))].
(18)
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Two representative moment-based approximation methods [32], i.e., the second moment
method and the fourth moment method, are used to estimate the failure probability with the first
four statistical moments of the probability distribution of the constraint function hnq, which are
the mean (µhnq

), variance (σ2
hnq

), skewness (αhnq ,3) and kurtosis (αhnq ,4). The second moment

method approximates the transformation function with the first two moments as in Equation (19),
while the fourth moment method utilizes all four moments and has a more complex structure;
see Equation (20) [32]. The approximations are incorporated in Equation (18) to calculate the failure
probability of the constraints:

F−1
ξ (Fhnq

(0)) = −
µhnq

σhnq

, (19)

F−1
ξ (Fhnq

(0)) = −
3(αhnq ,4 − 1)(

µhnq
σhnq

) + αhnq ,3((
µhnq
σhnq

)2 − 1)√
(9αhnq ,4 − 5α2

hnq ,3
− 9)(αhnq ,4 − 1)

. (20)

The accuracy of the moment-based approximation methods is determined by two factors. The first
factor is the intrinsic approximation error, which results from the approximated transformation
function (Equation (17)) using a limited number of statistical moments. By definition, the fourth
moment method has a lower intrinsic approximation error because this method is more rigorously
defined with higher order statistical moments. The second factor is the estimation error of the statistical
moments, especially the higher order moments, e.g., skewness and kurtosis. The PEM introduced in
Section 3 is used to calculate the needed statistical moments with considerably lower computational
costs in comparison to MC simulations. However, the precision of the estimated statistical moments
deteriorates with higher order statistical moments, because the PEM might fail for highly nonlinear
problems of higher order terms. Thus, especially the fourth moment method may suffer from the
estimation error. According to these two sources of approximation errors, it is difficult to determine
which approximation method, i.e., the second or fourth moment method, is superior for robust process
design. Therefore, we further analyze both concepts and investigate their benefits for efficient and
credible robustification strategies in the following section.

4.3. Robust Formulation of soft Equality Constraints

Similar to the inequality constraints, soft equality constraints are considered in a probabilistic
manner for the RO problem and are given as:

Pr[heq(x(t), u(t), p) 6= 0] ≤ εeq (21)

However, Equation (21) is not directly solvable for most applications as the constraint function
heq has a continuous probability distribution. In other words, the probability of a single point is equal
to zero when the random space is continuous [45]. Thus, we can find that:

Pr[heq(x(t), u(t), p) 6= 0] = 1, (22)

which contradicts Equation (21) if εeq � 1. Note that we aim to satisfy the equality constraint with
high probability, and thus, εeq � 1. Figure 3a shows an example of the equality constraint in the
random parameter space. Here, the samples are drawn from their distributions, and the curve shows
the locations where the samples satisfy the constraints.

To solve the RO problem, the robust equality constraints must be relaxed as shown in Figure 3b.
This idea is analogous to the relaxed margin used in support vector machines (SVMs), which have
been applied extensively in machine learning [46]. We ease the restriction from the constraints by
admitting that samples can lie within a certain range around the constraints. Based on the relaxation,
the robust equality constraints in Equation (21) are substituted by:
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Pr[−δeq ≤ heq(x(t), u(t), p) ≤ δeq] ≥ 1− εeq, (23)

where δeq indicates the relaxation factor and determines the range of relaxed equality constraints.
As we can see in Figure 3b and Equation (23), we have a region rather than a single curve where the
constraint is satisfied. Thus, we can have nonzero probability, and the RO problem becomes solvable.
The robust equality constraints in Equation (23) have nearly the same structure as the robust inequality
constraints in Equation (15). Therefore, the methods described in Section 4.2 can be used to solve
Equation (23) in RO problems immediately.

As mentioned previously, there is a trade-off between the performance of the objective function
and the satisfaction probability of soft inequality and soft equality constraints. The relevant factors,
εnq, εeq and δeq, have to be adapted properly. More details about how to select these factors are
presented with the given case studies in Section 7.

 

𝜃1 

𝜃2 

𝐡𝑒𝑞(𝐱, 𝐮, 𝐩) = 0 

(a)

 

𝜃1 

𝜃2 

𝛿𝑒𝑞 
𝛿𝑒𝑞 

𝐡𝑒𝑞 𝐱, 𝐮, 𝐩 = 0 

(b)

Figure 3. Illustration of soft equality constraints heq(x, u, p) = 0. For the sake of explanation,
a two-dimensional random space with uncertain parameters θ1 and θ2 is used. Samples satisfying the
constraints are shown by blue-filled circles , while samples that violate the constraints are shown by
red cross . (a) The probability of samples that satisfy the equality constraint (red line ) is equal to
zero for the continuous random space; (b) the equality constraint and its relaxed boundaries (green
dashed line ) with width δeq. The probability of satisfying the equality constraints is given by the
percentage of samples, i.e., , which are located within the boundaries.

5. Robust Optimization with the PEM

The final structure to solve the RO problem defined in Problem 1 is summarized in what follows.
Note that F(·) in Equations (31) and (32) indicates the CDF of a standard Gaussian distribution.
The PEM is used to estimate the relevant statistical moments to include the effect of parameter
uncertainties. Equations (26)–(30) are the evaluations of the dynamic system and the constraint
functions for all deterministic sample points that are generated from the probability distributions of
the uncertain model parameter. Based on the evaluations, Equations (34)–(39) calculate the statistical
moments of the objective function and constraints, which are used in Equations (24), (31) and (32).
Although Equations (31) and (32) demonstrate the approximation with the fourth moment method,
we can easily switch to the second moment method by changing the structure from Equation (20)
to Equation (19).
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min
x(·),u(·)

E[M(xt f )] + αVar[M(xt f )], (24)

subject to:

i = 1, . . . , 2d2 + 1, m = 1, 2, 3 (25)

θi = [pi, x0,i]
T , xi = [xd,i, xa,i]

T , xd,i(0) = x0,i, xt f ,i = xi(t f inal), (26)

ẋd,i(t) = gd(xi(t), u(t), pi), 0 = ga(xi(t), u(t), pi), (27)

h1,i = −hnq(xi(t), u(t), pi) (28)

h2,i = heq(xi(t), u(t), pi) + δeq (29)

h3,i = −heq(xi(t), u(t), pi) + δeq (30)

F(−
3(αh1,4 − 1)(

µh1
σh1

) + αh1,3((
µh1
σh1

)2 − 1)√
(9αh1,4 − 5α2

h1,3
− 9)(αh1,4 − 1)

) ≤ εnq (31)

F(−
3(αh2,4 − 1)(

µh2
σh2

) + αh2,3((
µh2
σh2

)2 − 1)√
(9αh2,4 − 5α2

h2,3
− 9)(αh2,4 − 1)

) + F(−
3(αh4,4 − 1)(

µh4
σh4

) + αh4,3((
µh4
σh4

)2 − 1)√
(9αh4,4 − 5α2

h4,3
− 9)(αh4,4 − 1)

) ≤ εeq (32)

umin ≤ u ≤ umax, (33)

E[M(xt f )] = w0M(xt f ,1) + w1

2d+1

∑
i=2

M(xt f ,i) + w2

2d2+1

∑
j=2d+2

M(xt f ,j), (34)

Var[M(xt f )] = w0(M(xt f ,1)− E[M(xt f )])
2 + w1

2d+1

∑
i=2

(M(xt f ,i)− E[M(xt f )])
2

+w2

2d2+1

∑
j=2d+2

(M(xt f ,j)− E[M(xt f )])
2,

(35)

µhm
= w0hm,1 + w1

2d+1

∑
i=2

hm,i + w2

2d2+1

∑
j=2d+2

hm,j, (36)

σ2
hm

= w0(hm,1 − µhm
)2 + w1

2d+1

∑
i=2

(hm,i − µhm
)2+

w2

2d2+1

∑
j=2d+2

(hm,j − µhm
)2,

(37)

αhm ,3 =

w0(hm,1 − µhm
)3 + w1

2d+1
∑

i=2
(hm,i − µhm

)3 + w2
2d2+1

∑
j=2d+2

(hm,j − µhm
)3

σ3
hm

,
(38)

αhm ,4 =

w0(hm,1 − µhm
)4 + w1

2d+1
∑

i=2
(hm,i − µhm

)4 + w2
2d2+1

∑
j=2d+2

(hm,j − µhnq
)4

σ4
hm

,
(39)

6. Global Sensitivity Analysis

Before we apply the robust optimization framework, we briefly introduce the idea of global
sensitivity analysis (GSA). In general, GSA is not mandatory for the robust optimization framework
but provides useful information for analyzing and optimizing complex systems.
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GSA is a valuable tool for determining the impact of individual parameters and parameter
combinations on the result of a mathematical model for given parameter variations [41,47–51].
Thus, GSA determines the most relevant parameters and parameter uncertainties to be considered in
RO. By focusing on the relevant parameters and neglecting the insensitive parameters, we can reduce
the complexity of the RO problem considerably.

As most model parameters, which are identified via experimental data, are correlated, the effect
of parameter correlation has to be considered in GSA. In this work, we present GSA methods that
are capable of problems with independent parameters and problems with dependent parameters.
Although parameter dependence is quite common in practical applications, studies of GSA with
dependent parameters have been considered only recently; see [25–27]. Moreover, the GSA concepts
can be categorized into two types: variance-based methods [22,52,53] and moment-independent
methods [54]. For details about the definitions and a critical comparison of these two concepts,
the interested reader is referred to [55].

Although the moment-independent method has a more rigorous definition than the
variance-based method, the variance-based approach is the standard in GSA, and thus,
it is implemented in this work. The structure and types of sensitivity indices used in the variance-based
method are illustrated in Figure 4. On the left of Figure 4, the variance-based method defines three types
of sensitivity indices for independent parameters. First-order sensitivity indices Sind

i measure the main
effect of an individual parameter i on the model output, interaction sensitivity indices Sind

i,j,k,... measure

the dependence of the effect for two or more parameters, and total sensitivity indices Sind
Ti

are the sum
of the main and interactive effects of parameter i. On the right of Figure 4, new sensitivity indices are
derived from the covariance decomposition of the model output for correlated parameters. They have
the same types of sensitivity indices as the independent case but for three different groups: structural
sensitivity indices SU , correlative sensitivity indices SC, and total covariance-based sensitivity indices
Scov. Structural sensitivity indices reflect the impact of an individual model parameter or parameter
interactions on the model output and are determined by the model structure. They have the same
trend as independent sensitivity indices but with different magnitudes. The correlative sensitivity
indices exclusively show the impact of parameter correlations. The sum of these indices leads
to total covariance-based sensitivity indices Scov that express the overall impact of the correlated
parameters. In this work, the first-order sensitivity indices Sind

i for the independent case and the total
covariance-based first-order sensitivity indices Scov

i for the correlated case are sufficient, because there
are few interactions between the uncertain parameters. Values of the sensitivity indices were utilized
as indicators for reducing the complexity of our RO problem as demonstrated in the design of the
penicillin fermentation process.
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Figure 4. Structure of sensitivity measures for independent (left) and correlated (right) parameters.

7. Case Studies

In this section, we demonstrate the performance of the proposed framework with two case studies.
In Case Study 1, we design an optimal jacket temperature profile for a tubular reactor considering
two uncertain and correlated model parameters. Additionally, a robust equality constraint for the
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product temperature at the reactor outlet is assumed to incorporate process intensification aspects in
the design problem. In Case Study 2, a penicillin fermentation process is analyzed as it is of interest in
the pharmaceutical industry. A fed-batch bioreactor model is used to design an optimal feeding profile
under parameter uncertainties. GSA is applied to determine the influence of parameter uncertainties
on the process states and to offer a more tractable problem, i.e., a reduced number of uncertain model
parameters, which have to be considered in the robust process design.

GSA and the RO problem were solved in MATLAB R©(Version 2017b, The MathWorks Inc., Natick,
MA, USA). Parameter sensitivities for the independent case were calculated with UQLAB (Version 1.0,
ETH Zurich, Switzerland) [56]. The RO problem for the first case study was solved with the MATLAB
function fmincon, while the RO problem for the second case study, which is more complex, was solved
by the simultaneous approach [57] and implemented in the symbolic framework CasADi (Verion 3.3.0,
KU Leuven, Belgium) for numerical optimization [58] using the NLP solver IPOPT [59] and the MA57
linear solver [60].

7.1. Case Study 1: A Jacket Tubular Reactor

Here, the design of a tubular reactor, where an irreversible first-order reaction Equation (40) takes
place, is considered the first benchmark case study.

A −→ B + C. (40)

The reactor, which is operated under the steady-state condition, is described by the following
governing Equations [31]:

dx1

dz
=

αkin
v

(1− x1)e
γx2

1+x2 , (41)

dx2

dz
=

αkinδ

v
(1− x1)e

γx2
1+x2 +

β

v
(u− x2), (42)

where z is the relative position along the reactor, 0 ≤ z ≤ 1. The states x1 and x2 are the dimensionless
forms of the reactant concentration of A and the reactor temperature, respectively. The jacket
temperature is the control input given in its dimensionless form u = (Tj − Tin)/Tin and is adjusted
to meet the desired performance and robustness requirements. The control input is discretized into
25 equidistant elements constrained by 280 K and 400 K. The kinetic coefficient αkin and the heat transfer
coefficient β are assumed to be uncertain, i.e., they follow a Gaussian distribution with a standard
deviation of 10 % of their nominal values. The implemented parameter values and operating conditions
are summarized in Table 1. For additional details of the proposed reactor model, the interested reader
is referred to [31]. The conversion of the reactor C f , as well as the reactor temperature Tr, can be
calculated from their dimensionless form via:

C f (z = 1) = x1(z = 1), (43)

Tr(z) = x2(z)× Tin + Tin. (44)

In this case study, we aim to maximize the final conversion of reactant A while fulfilling the
given constraints on the reactor temperature. In particular, an upper boundary is added to the reactor
temperature to prevent undesired side reactions. The results of the deterministic optimal design
are depicted on the left of Figure 5. As we can see, the reactor temperature increases rapidly to the
upper boundary to ensure the maximum reaction rate and final conversion of 0.996, respectively.
However, numerous violations of the temperature boundary occur when the parameter uncertainties
are taken into account. In contrast to the deterministic process design, a robust optimal design that
includes parameter uncertainties is conducted next. Here, a weight factor α = 3 and a tolerance value
εnq = 1% are used for the robust objective and inequality constraints. Please note that the weight
factor α indicates the amount of trade-off between process performance and robustness of objective
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function, and is selected based on our previous studies [6]. The tolerance value εnp = 1% means
the robust solution has to guarantee that the violation probability of inequality constraints should
not be larger than 1%, and could be changed depending on robustness required for the inequality
constraint. The robust inequality constraints are approximated with the second moment method as in
Equation (19). The corresponding results are given on the right of Figure 5. As we can see from the
results, the jacket temperature profile is different from the nominal design, especially from location 0.3
to the end of the reactor. Moreover, the reactor temperature profile of the robust design remains below
its upper limit with a probability of 99% with the loss in the reactor performance; i.e., final conversion
decreases to 0.985.

Table 1. Parameters for the tubular reactor model.

Parameters Unit Nominal Value Uncertainty

x1(0) - 0 -
x2(0) - 0 -
αkin s−1 0.058 N (0.058, 0.00582)

β s−1 0.2 N (0.2, 0.022)
v m s−1 0.1 -
γ - 16.66 -
δ - 0.25 -
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Figure 5. Results for nominal design (left) and robust design (right). (a,b) are the optimal profiles of the
jacket temperature; (c,d) are the evolution of the reactor temperature and the 99% confidence interval
(CI). The mean and standard deviation of the conversion of reactant A have values of [0.996, 0.004] and
[0.985, 0.010] for the nominal and robust design, respectively.

7.1.1. Robust Design With Parameter Correlation

Next, we investigate the influence of parameter correlation on the robust process design. We assign
the two uncertain parameters αkin and β with the marginal distributions shown in Table 1 and
the additional Pearson correlation coefficient of 0.8. Deterministic sample points for the correlated
parameters are generated with Algorithm 1 of the modified PEM. The structure of the RO problem is
similar to that for independent parameters with a weight factor α = 3 and a tolerance value εnq = 1%.
Here, too, the second moment method is applied. In Figure 6, results for the optimal design with
parameter correlation are given. As we can see, the profile of the jacket temperature has considerable
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differences compared to the nominal case; see Figure 5. Especially, the drop in the jacket temperature
between position z = 0.5 and z = 0.8 results from the parameter correlation effect.
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(b)
Figure 6. Results for robust design with parameter correlation: (a) the optimal jacket temperature
profile and (b) the reactor temperature and its 99% confidence interval (CI). The mean and standard
deviation of the conversion of reactant A are 0.986 and 0.008, respectively.

7.1.2. Performance of the Fourth Moment Method

Thus far, only the second moment method has been used to approximate the robust inequality
constraints. The resulting confidence intervals of the reactor temperature are illustrated with green
dashed curves in Figures 5d and 6b. We can observe that the upper boundary of the confidence
intervals are consistent with the upper limit of the reactor temperature once they approach it. However,
the confidence intervals are approximated by taking into account only the first and second statistical
moments and are insufficient if the probability distribution of the reactor temperature is non-Gaussian.
Reference values based on MC simulations with 10,000 sample points are summarized in Table 2. In
the case of the second moment method, the violation probabilities are 4.7% and 3.6%, respectively,
which exceeds the tolerance value εnq = 1%. The reason for this mismatch is mainly due to the
approximation error of the robust inequality constraints while considering only the first two statistical
moments.

Table 2. The number of constraint violations from 10,000 Monte Carlo simulations, where the robust
inequality constraints are approximated by the second and fourth moment methods for process designs
with independent and correlated parameters.

Second Moment Method Fourth Moment Method

Number of Independent Correlated Independent Correlated
violations 470 357 440 385

Probability 0.047 0.036 0.044 0.039

As discussed in Section 4.2, the fourth moment method uses more statistical information than
the second moment method and has a lower approximation error. The same RO problem is solved
again with the fourth moment approach, and the violation probabilities are estimated and listed in the
right of Table 2. However, the expected improvement could not be validated. In fact, the violation
probability for the correlated scenario increases in case of the fourth moment method. The reason
for this unexpected performance is mainly due to the estimation error of higher order statistical
moments. When we compare the first four statistical moments estimated by the PEM and the MC
simulations, we can see in Figure 7 that the PEM provides useful approximations for the first and
second moments and deteriorates considerably for the higher order moments. As has been mentioned,
the PEM is accurate if the system can be accurately approximated with the sum of monomials up to
order of five, and as such its accuracy deteriorates with the increasing order of the statistical moments.
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The comparison indicates that the fourth moment method might not be suitable for the PEM-based
robust optimization framework, especially for practical applications where the systems might be
strongly nonlinear and complex. Please note that for calculating the n-th statistical moment, not only
the function k(ξ) but also k(ξ)n has to be approximated, which is challenging for all sample-based
approximation schemes, including MC simulations [2]. The fourth moment approach, in turn, is still a
promising way to approximate probability distributions if the higher order moments can be estimated
accurately, e.g., using polynomial chaos expansion or Gaussian mixture density approximation [61].
Based on this finding, in the following section, we exclusively implement the second moment method.
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Figure 7. A comparison of the first four statistical moments, (a) mean value, (b) standard deviation, (c)
skewness, and (d) kurtosis, estimated with the point estimate method (PEM) and Monte Carlo (MC)
simulations for the reactor temperature in Case Study 1.

Alternatively, one might adjust the tolerance value for the robust inequality constraints to
mitigate the effect of approximation errors when using the second moment method. The violation
probabilities of the inequality constraints for the robust design with different tolerance values are
given in Figure 8. As we can see, the probability can achieve 0.01 by setting the tolerance value to
0.002 for the independent and correlated cases, while the average conversion of reactant A was slightly
impacted by changing the tolerance value; see Figure 8.

7.1.3. Impact of Robust Equality Constraints

Here, we would like to investigate the effect of robust equality constraints that might result from
process specifications. The design of continuous processes follows the trend of process integration and
intensification to reduce energy costs and raw material. For instance, to avoid extra cooling expenses
for a downstream process, we can integrate the heat management into the reactor design directly.
To this end, a terminal equality constraint is added to lower the outlet temperature to the value of the
inlet temperature:

|Tr(z = 1)− Tr(z = 0)| = 0. (45)
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With this additional soft equality constraint, there exists a trade-off between maximizing the
reactant conversion while minimizing the temperature difference. First, the results of the reactor
design where we neglected parameter uncertainties are given in Figure 9a. The jacket temperature
drops sharply to its lower limit for the second half of the reactor, and the outlet temperature returns
exactly to 340 K. Consequently, the reactant conversion decreases with 2% compared to the nominal
design without the equality constraint (Figure 5). Next, the effect of parameter uncertainties on the
nominal design is illustrated in Figure 9b with the green dotted line. Because of limited space, we
mainly consider the case where uncertain parameters are correlated. In this case, a strong violation
of inequality and equality constraints exists and has to be tackled properly. The robust optimization
framework proposed in Section 5 is used to solve this problem. An identical setting (α = 3 and
εnq = 1%) is used for the objective function and inequality constraints here. Different scenarios with
different relaxation factors δeq and tolerance factors εeq are used to demonstrate the effect of robust
equality constraints on the process performance. Values for the relaxation factors and results are
summarized in Figure 10. We can see that the probability distribution of the outlet temperature
narrows quickly once we reduce the relaxed region and violation probability, while the performance
of the reactor (the reactant conversion) deteriorates considerably. The process engineer has to decide
on the trade-off between product performance and energy expense. Note that the robust inequality
constraints in these scenarios are always satisfied, and thus, are not explicitly shown here.
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Figure 8. The violation probability of the reactor temperature (Pro) and the average conversion of the
reactant A (Con) for process designs with different tolerance values. Ind and Cor indicate the results
for the independent and correlated scenarios.
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Figure 9. Results for the nominal design with terminal equality constraints: (a) the optimal jacket
temperature profile and (b) the reactor temperature with its 99% confidence interval (CI). The mean
and standard deviation of the conversion of reactant A are 0.980 and 0.016, respectively.
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Figure 10. The average conversion of reactant A and the probability density function of the outlet
temperature for four scenarios that have different relaxation factors δeq and tolerance factors εeq. 1:
δeq = 5, εeq = 10%, 2: δeq = 5, εeq = 1%, 3: δeq = 2, εeq = 10%, 4: δeq = 2, εeq = 1%.

7.2. Case Study 2: Fed-Batch Bioreactor for Fermentation of Penicillin

The performance of the PEM-based robust optimization framework is also demonstrated with
a fermentation process as illustrated in Figure 11. Fermentation processes have received great interest
in the pharmaceutical industry, and in this study, we try to optimize the penicillin fermentation [62].
To this end, we design a feeding substrate profile that ensures the optimal performance and robustness
of the bioreactor. A fed-batch reactor model is used based on the following assumptions: (1) ideal
mixing of all components in the bioreactor; (2) isothermal condition in the reactor; and (3) the effect of
the oxygen transfer can be neglected by considering an upper limitation on the biomass and substrate
concentrations. The mathematical model for the fermentation process reads as:

dX
dt

= µX− F
V

X (46)

dS
dt

= − µ

Yx
X−

θp

Yp
X−mxX +

F
V
(S f − S) (47)

dP
dt

= θpX− KP− F
V

P (48)

dV
dt

= F, (49)

where the state variables, X, S, P and V, indicate the concentrations of the biomass, substrate, product
and volume of components in the reactor, respectively. The feeding stream of the substrate has
a constant concentration S f and a time-dependent flow rate F. The specific growth rate of the biomass
µ and the product θp is represented by the substrate inhibition kinetic of the following form:

µ =
µmS

S + KxX
(50)

θp =
θmS

S + Kp + S2/Ki
. (51)
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The initial conditions of the state variables and the nominal value of the other kinetic parameters
are summarized in Table 3. Further details about the model are given in [62].

Table 3. Nominal values of the model parameters and the initial conditions for the fed-batch model.

Parameters Unit Nominal Value Parameters Unit Nominal Value

µm 1/h 0.11 mx 1/h 0.029
Kx - 0.006 S f g/L 400
θm 1/h 0.004 t h 0–80
Kp g/L 0.0001 X(0) g/L 1
Ki g/L 0.1 S(0) g/L 0.5
K 1/h 0.01 P(0) g/L 0
Yx - 0.47 V(0) L 250
Yp - 1.2

First, the process is optimized assuming that all parameters are estimated precisely; i.e., parameter
uncertainties are neglected. The goal is to maximize the final concentration of product P within a given
time range while the concentration of biomass X and substrate S should be below 40 g/L (limited
by the oxygen transfer capacity) and 0.5 g/L (to avoid side reactions) for the entire time horizon,
respectively [63]. The control variable F is parametrized with 100 elements, which are bounded within
the range of [0, 10]. The resulting dynamic optimization problem is solved with the nominal value
of all parameters, and the results are shown in Figure 12. Here, the feed rate of the substrate is
adjusted to keep the substrate concentration equal to 0.5 g/L at which the maximum growth rate of
the biomass is achieved at the beginning. After the biomass concentration reaches its upper limit,
the substrate concentration drops nearly to zero to cease the self-reproduction of the biomass. Moreover,
the substrate is fed at low rate that is consumed by the biomass to produce the desired product.

Medium

Substrate
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Sterile Air

Air Compressor

Air Filtration

Exhaust
Air Filtration

Storage

Downstream Process: 
Removal Biomass, Extraction,
Crystallization, Drying

Optimal feeding profile

Cooling

Cooling

Figure 11. Scheme of a fermentation process with a fed-batch bioreactor.

However, due to imperfect measurement data and model simplifications, the estimates of the
model parameters may have a considerable error as well as being correlated. Based on the results
given in [64], we assign the nine parameters with a multivariate normal distribution, where their
marginal distributions have mean values equal to the nominal values and standard deviations equal
to 10% of the nominal values. To investigate the effect of parameter correlations, two scenarios are
analyzed: (1) the parameter correlations are neglected, and the correlation matrix Σ is set to the identity
matrix; (2) the correlation coefficients of µm, θm, Yx, and mx in Σ are set to 0.95. The effect of imprecise
model parameters on the process performance is also shown in Figure 12 with the blue dotted lines.
Strong violation of the constraints and large variation of the product quality are observed, and thus,
the parameter uncertainty has to be considered in the process design for robustness. Please note that
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the negative confidence interval (CI) of the substrate concentration stems from the assumption that the
CIs are symmetric and directly derived from the mean and variance of the states.
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Figure 12. (a) Feeding profile; evolution of the (b) biomass; (c) substrate and (d) product obtained from
the nominal design, where the parameter uncertainties are neglected. In turn, the blue dotted lines
illustrate the effect of the parameter uncertainties.

7.2.1. Global Sensitivity Analysis

Before solving the RO problem for the fermentation process, we want to decrease its computational
cost by deciding which parameters are not relevant and can be neglected in the robust process design.
Thus, the corresponding time-dependent sensitivity indices of the parameters are calculated for the
biomass and substrate concentrations in addition to the product concentration at the final time point,
i.e., for those quantities involved in either the objective function or the constraints of the optimization
problem. Figures 13a,c and 14a show the sensitivity results for the independent case. As we can
see, the biomass and product concentrations are strongly affected by parameters µm, θm, Yx, and mx,
while the other parameters have a minor impact. Moreover, by summing up the first-order sensitivity
indices, the interaction among the parameters are negligible. Next, we calculate the correlative
(SC) and total covariance-based (Scov) first-order sensitivity regarding the biomass, substrate, and
product concentration; see Figures 13b,d and 14b. Here, we do not show the results for the structural
sensitivity indices and all the total sensitivity indices. The reason is that the model structure does not
change with the existence of parameter correlations, and thus, the structural sensitivity indices and
parameter interactions are similar to those for the independent case. Nevertheless, an evident effect of
parameter correlations on the sensitivity analysis result can be observed: The parameter sensitivities
have a completely different trend compared to the independent case. The sensitivity results from the
correlated case also suggest considering the uncertainties and correlations from µm, θm, Yx, and mx for
the RO problem. By using the information from the sensitivity analysis, we can significantly reduce
the number of required PEM points for the RO problem. The number of model evaluations for each
optimization iteration decreases from 2× 92 + 1 = 163 to 2× 42 + 1 = 33 for the independent and
correlated cases. The performance of the RO with parameter uncertainties of appreciable sensitivities
is studied in the following section.
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Figure 13. Sensitivity results of the nine parameters on the biomass and substrate concentrations for the
independent case: (a) first-order sensitivity indices for the concentration of biomass X; (b) first-order
sensitivity indices for the concentration of substrate S; and correlated case (c) total covariance-based
first-order sensitivity indices for biomass X; (d) total covariance-based first-order sensitivity indices for
substrate S .
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Figure 14. Sensitivity results of nine parameters on the final product concentrations for the independent
(a) and correlated (b) case.

7.2.2. Robust Optimization

The RO is solved with the framework proposed in Section 5. To this end, a weight factor α = 3
and a tolerance value εnq = 1% are used for the robust objective and inequality constraints. The PEM
points for RO are generated only for parameters with appreciable sensitivities, i.e., four parameters
are considered. First, the RO is solved for the simplifying assumption of the independent parameters.
The evolution of the mean and 99% CIs for the biomass and the substrate are illustrated in Figure 15.
Please note that the CIs in all the plots are quantified with considering the uncertainties from all nine
parameters. As we can see from Figure 15, the biomass grows rapidly until its CI approaches the upper
boundary to maximize the productivity, while the CI of the substrate remains at its upper boundary at
the beginning and decreases to a low value to activate the production phase. However, the result of
the RO ignoring parameter dependencies is too conservative. The effect of parameter dependencies
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is shown in Figure 16 for the previous optimized setting, i.e., assuming independent parameters.
The shape of the CIs of the biomass and the substrate are quite different from those in Figure 15 and
do not reach their upper boundaries, which leaves some space for improvement. Therefore, we repeat
the RO considering the parameter dependencies accordingly and show the results in Figure 17. As we
can see, the CIs of both biomass and substrate concentration reach the upper boundaries and are less
conservative compared to the results in Figure 16. The optimized feeding profile of the substrate for
the independent and correlated cases are compared in Figure 18a. The substrate for the correlated case
is fed with a higher rate and descended a bit earlier than that for the independent scenario. The PDFs
of the product concentrations at the final time point shown in Figures 16 and 17 are compared in more
detail in Figure 18b. The product concentration is improved considerably as the dashed curve, which
represents the parameter dependency case, is a bit narrowed and shifted to higher concentrations.

As mentioned above, the negative CIs of the substrate concentration in all the figures are due
to the assumption of symmetric distributions of the states. This also indicates that the CIs might not
be accurate, and thus, we validate them by checking the number of constraint violations with 10,000
Monte Carlo simulation for the independent and correlated case, where the corresponding optimal
feeding profiles are applied. The results are listed in Table 4. As we can see from the second row,
the violation frequencies are higher than expected, εnq = 1% = 100

10,000 , especially for the substrate
concentration. Although the violation frequencies might be acceptable for practical applications, we
can improve the RO credibility by using a smaller tolerance factor as introduced in Section 7.1.2.
Corresponding results are shown in the third row of Table 4. All violation numbers are improved,
while we slightly lower the reactor performance regarding the penicillin productivity.
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Figure 15. Evolution of the mean and 99% confidence interval (CI) of the (a) biomass and (b) substrate
concentrations for the robust design of the fed-batch bioreactor, where the uncertain parameters are
independent. The feeding profile from the robust design with independent uncertain parameters is applied.
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Figure 16. Evolution of the mean and 99% confidence interval (CI) of the (a) biomass and (b) substrate
concentrations for the robust design of the fed-batch bioreactor, where the uncertain parameters are
correlated. The feeding profile from the robust design with independent uncertain parameters is applied.
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Figure 17. Evolution of the mean and 99% confidence interval (CI) of the (a) biomass and (b) substrate
concentrations for the robust design of the fed-batch bioreactor, where the uncertain parameters are
correlated. The feeding profile from the robust design with correlated uncertain parameters is applied.
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Figure 18. Results for the robust design of the fed-batch bioreactor, where the uncertain parameters are
either independent or correlated. (a) control sequence for substrate feeding; and (b) final concentration
of the product, respectively.

Table 4. The number of constraint violations from 10,000 Monte Carlo simulations, where the tolerance
factor εnq = 1% and εnq = 0.14% for both designs with independent and correlated parameters.
The performance indicates the mean value of the production concentration at the end.

Independent Correlated

εnq = 1% X 146 35
S 572 554

performance 3.63 3.76

εnq = 0.14% X 19 2
S 378 369

performance 3.53 3.67

8. Conclusions

In this work, we proposed a new framework for solving robust optimization problems using the
point estimate method. Here, a sampling strategy derived from an isoprobabilistic transformation was
used to include parameter dependencies and soft equality constraints of practical relevance. In parallel,
we also analyzed methods including fourth-order statistical moments to approximate robust equality
and inequality constraints. To include only the most relevant model parameters and to reduce the
computation costs, we also calculated the global parameter sensitivities before the robustification step.

Two case studies, which include chemical and biological production processes, were used to
demonstrate the performance of the proposed framework. The first case study attempts to maximize the
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conversion of a reactant while simultaneously satisfying the constraints on the reactor temperature of a
tubular reactor. The proposed method addresses the trade-off between performance and robustness for
the reactor under parameter uncertainties. We observed an evident influence of parameter correlation
on the designed control profile and confidence intervals of the system states. Performances of the
second and fourth moment methods for approximating the robust inequality constraints were also
examined. The fourth moment method has a more rigorous structure compared to the second moment
approach. However, the performance of the fourth moment method is limited by the accuracy of the
PEM. Thus, we concluded that the second moment method might be more favorable in this particular
case. Furthermore, the approximation error could be compensated by using more conservative
tolerance values, which resulted in slight deterioration of the reactor performance. To save energy
costs, we also added an equality constraint to the outlet temperature. The robust equality constraint
had to be relaxed deliberately to be solvable. The process performance deteriorated dramatically with
lower relaxation factors. The second example is the optimal design of a bioreactor for a penicillin
fermentation process. Global sensitivity analysis was used to determine the relevant parameters and
to ease the computational expense of the robustification framework. This is extremely useful for
large-scale problems with a high number of uncertain parameters. Moreover, the effect of parameter
correlations on the robust process design was also observed. Here, the PEM still performs reasonably
well and retains a relatively low computational cost.

In conclusion, the proposed framework provides a comprehensive strategy for robust optimization
problems and covers features that have not been considered in previous works. It is able to achieve
suitable robust design in the absence and presence of parameter correlations at low computational costs.
As discussed, the PEM might fail in estimating higher order statistical moments, especially for systems
with strong nonlinearities. This is also the main reason why the performance of the fourth moment
method did not provide the expected improvement in robustification. Alternatively, the accuracy of the
PEM can be increased using extended sample-generating rules, i.e., higher sample number results in
more precise approximation at the cost of efficiency, or different methods for uncertainty quantification
might be studied. Future work will focus on this issue.
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