76 research outputs found

    Engineering pressure retarded osmosis membrane bioreactor (PRO-MBR) for simultaneous water and energy recovery from municipal wastewater

    Get PDF
    Osmotic membrane bioreactors (OMBR) have gained increasing interest in wastewater treatment and reclamation due to their high product water quality and fouling resistance. However, high energy consumption (mostly by draw solution recovery) restricted the wider application of OMBR. Herein, we propose a novel pressure retarded osmosis membrane bioreactor (PRO-MBR) for improving the economic feasibility. In comparison with conventional FO-MBR, PRO-MBR exhibited similar excellent contaminants removal performance and comparable water flux. More importantly, a considerable amount of energy can be recovered by PRO-MBR (4.1 kWh/100 m2·d), as a result of which, 10.02% of the specific energy consumption (SEC) for water recovery was reduced as compared with FO-MBR (from 1.42 kWh/m3 to 1.28 kWh/m3). Membrane orientation largely determined the performance of PRO-MBR, higher power density was achieved in AL-DS orientation (peak value of 3.4 W/m2) than that in AL-FS orientation (peak value of 1.4 W/m2). However, PRO-MBR suffered more severe and complex membrane fouling when operated in AL-DS orientation, because the porous support layer was facing sludge mixed liquor. Further investigation revealed fouling was mostly reversible for PRO-MBR, it exhibited similar flux recoverability (92.4%) to that in FO-MBR (95.1%) after osmotic backwash. Nevertheless, flux decline due to membrane fouling is still a restricting factor to power generation of PRO-MBR, its power density was decreased by 38.2% in the first 60 min due to the formation of fouling. Overall, in perspective of technoeconomic feasibility, the PRO-MBR demonstrates better potential than FO-MBR in wastewater treatment and reclamation and deserves more research attention in the future.This work was supported by the National Natural Science Foundation of China [grant number 51978312]; the Six Major Talent Peaks of Jiangsu Province [grant number 2018-JNHB-014]; and the Program to Cultivate Middle-aged and Young Science Leaders of Colleges and Universities of Jiangsu Province

    A comparison of the molecular organization of genomic regions associated with resistance to common bacterial blight in two Phaseolus vulgaris genotypes

    Get PDF
    Resistance to common bacterial blight, caused by Xanthomonas axonopodis pv. phaseoli, in Phaseolus vulgaris is conditioned by several loci on different chromosomes. Previous studies with OAC-Rex, a CBB-resistant, white bean variety of Mesoamerican origin, identified two resistance loci associated with the molecular markers Pv-CTT001 and SU91, on chromosome 4 and 8, respectively. Resistance to CBB is assumed to be derived from an interspecific cross with Phaseolus acutifolius in the pedigree of OAC-Rex. Our current whole genome sequencing effort with OAC-Rex provided the opportunity to compare its genome in the regions associated with CBB resistance with the v1.0 release of the P. vulgaris line G19833, which is a large seeded bean of Andean origin, and (assumed to be) CBB susceptible. In addition, the genomic regions containing SAP6, a marker associated with P. vulgaris-derived CBB-resistance on chromosome 10, were compared. These analyses indicated that gene content was highly conserved between G19833 and OAC-Rex across the regions examined ( \u3e 80%). However, fifty-nine genes unique to OAC Rex were identified, with resistance gene homologues making up the largest category (10 genes identified). Two unique genes in OAC-Rex located within the SU91 resistance QTL have homology to P. acutifolius ESTs and may be potential sources of CBB resistance. As the genomic sequence assembly of OAC-Rex is completed, we expect that further comparisons between it and the G19833 genome will lead to a greater understanding of CBB resistance in bean

    [Cu(NHC)]-Catalyzed C-H Allylation and Alkenylation of both Electron-Deficient and Electron-Rich (Hetero)arenes with Allyl Halides

    No full text
    New reactivity of a [Cu(NHC)] (NHC=N-heterocyclic carbene) catalyst is disclosed for the efficient C-H allylation of polyfluoroarenes using allyl halides in benzene at room temperature. The same catalyst system also promotes an isomerization-induced alkenylation of initially the generated allyl arenes when the reaction is run in tetrahydrofuran. Significantly, not only electron-deficient but also electron-rich (hetero)arenes undergo this double-bond migration process, thus leading to alkenylated products. The present system features mild reaction conditions, broad scope with respect to the arene substrates and allyl halide reactants, good functional-group tolerance, and high stereoselectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim125251sciescopu

    Copper-Catalyzed Formal Dehydrogenative Coupling of Carbonyls with Polyfluoroarenes Leading to beta-C-H Arylation

    No full text
    We herein communicate a formal dehydrogenative coupling of carbonyls with polyfluoroarenes enabled by Cu catalysis. Silyl enol ethers initially prepared from carbonyls are postulated to undergo the copper-mediated oxidative dehydrogenative coupling with polyfluoroarenes via a radical pathway. Including cyclic and linear ketones, aldehydes, and esters, a broad range of beta-aryl carbonyl products were efficiently obtained in high regio- and stereoselectivity with excellent functional group tolerance.11Nsciescopu

    (NHC)Cu-Catalyzed Mild C-H Amidation of (Hetero)arenes with Deprotectable Carbamates: Scope and Mechanistic Studies

    No full text
    Primary arylamines are an important unit broadly found in synthetic, biological, and materials science. Herein we describe the development of a (NHC)Cu system that mediates a direct C-H amidation of (hetero)arenes by using N-chlorocarbamates or their sodio derivatives as the practical amino sources. A facile stoichiometric reaction of reactive copper-aryl intermediates with the amidating reagent led us to isolate key copper arylcarbamate species with the formation of a C-N bond. The use of tBuONa base made this transformation catalytic under mild conditions. The present (NHC)Cu-catalyzed C-H amidation works efficiently and selectively on a large scale over a range of arenes including polyfluorobenzenes, azoles, and quinoline N-oxides. Deprotection of the newly installed carbamate groups such as Boc and Cbz was readily performed to afford the corresponding primary arylamines. © 2016 American Chemical Society141

    Engineering pressure retarded osmosis membrane bioreactor (PRO-MBR) for simultaneous water and energy recovery from municipal wastewater

    Get PDF
    Osmotic membrane bioreactors (OMBR) have gained increasing interest in wastewater treatment and reclamation due to their high product water quality and fouling resistance. However, high energy consumption (mostly by draw solution recovery) restricted the wider application of OMBR. Herein, we propose a novel pressure retarded osmosis membrane bioreactor (PRO-MBR) for improving the economic feasibility. In comparison with conventional FO-MBR, PRO-MBR exhibited similar excellent contaminants removal performance and comparable water flux. More importantly, a considerable amount of energy can be recovered by PRO-MBR (4.1 kWh/100 m2·d), as a result of which, 10.02% of the specific energy consumption (SEC) for water recovery was reduced as compared with FO-MBR (from 1.42 kWh/m3 to 1.28 kWh/m3). Membrane orientation largely determined the performance of PRO-MBR, higher power density was achieved in AL-DS orientation (peak value of 3.4 W/m2) than that in AL-FS orientation (peak value of 1.4 W/m2). However, PRO-MBR suffered more severe and complex membrane fouling when operated in AL-DS orientation, because the porous support layer was facing sludge mixed liquor. Further investigation revealed fouling was mostly reversible for PRO-MBR, it exhibited similar flux recoverability (92.4%) to that in FO-MBR (95.1%) after osmotic backwash. Nevertheless, flux decline due to membrane fouling is still a restricting factor to power generation of PRO-MBR, its power density was decreased by 38.2% in the first 60 min due to the formation of fouling. Overall, in perspective of technoeconomic feasibility, the PRO-MBR demonstrates better potential than FO-MBR in wastewater treatment and reclamation and deserves more research attention in the future.</p

    Copper-Catalyzed Direct Alkylation of Perfluoroarenes with Hydrocarbons

    No full text
    Construction of carbon–carbon bonds is one of the most essential tools in chemical synthesis. In the previously established cross-coupling reactions, pre-functionalized starting materials are employed usually in the form of arylor alkyl (pseudo)halides or their metallated derivatives. However, direct use of arenes and alkanes via a twofold oxidative C–H bond activation strategy to access chemoselective C(sp2 )‒C(sp3 ) cross-couplings is highly challenging due to the low reactivity of carbon–hydrogen (C–H) bonds and the difficulty in suppressing side reactions such as homocouplings. Herein, we present a copper-catalyzed cross-dehydrogenative coupling of perfluoroarenes with alkanes. Mechanistic information was obtained by combining experimental and computational studies to suggest that the optimal diketimine copper catalyst system plays a dual role to activate both sp3 and sp2 C‒H bonds

    Cesium Carbonate-Catalyzed Reduction of Amides with Hydrosilanes

    No full text
    Cesium carbonate has been found to be an effective catalyst for the reduction of tertiary carboxamides with the simple, commercially available PhSiH<sub>3</sub> under solvent-free conditions. The catalytic system can effectively reduce a range of amides under relatively mild conditions (from room temperature to 80 °C) to yield the corresponding amines in good to excellent yields (71–100%) and thus has the potential for practical applications
    • …
    corecore