4,095 research outputs found

    Efficient non-collinear antiferromagnetic state switching induced by orbital Hall effect in chromium

    Full text link
    Recently orbital Hall current has attracted attention as an alternative method to switch the magnetization of ferromagnets. Here we present our findings on electrical switching of antiferromagnetic state in Mn3Sn/Cr, where despite the much smaller spin Hall angle of Cr, the switching current density is comparable to heavy metal based heterostructures. On the other hand, the inverse process, i.e., spin-to-charge conversion in Cr-based heterostructures is much less efficient than the Pt-based equivalents, as manifested in the almost one order of magnitude smaller terahertz emission intensity and spin current induced magnetoresistance in Cr-based structures. These results in combination with the slow decay of terahertz emission against Cr thickness (diffusion length of ~11 nm) suggest that the observed magnetic switching can be attributed to orbital current generation in Cr, followed by efficient conversion to spin current. Our work demonstrates the potential of light metals like Cr as an efficient orbital/spin current source for antiferromagnetic spintronics.Comment: 19 pages, 4 figure

    Role of TRPM8 in dorsal root ganglion in nerve injury-induced chronic pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic neuropathic pain is an intractable pain with few effective treatments. Moderate cold stimulation can relieve pain, and this may be a novel train of thought for exploring new methods of analgesia. Transient receptor potential melastatin 8 (TRPM8) ion channel has been proposed to be an important molecular sensor for cold. Here we investigate the role of TRPM8 in the mechanism of chronic neuropathic pain using a rat model of chronic constriction injury (CCI) to the sciatic nerve.</p> <p>Results</p> <p>Mechanical allodynia, cold and thermal hyperalgesia of CCI rats began on the 4th day following surgery and maintained at the peak during the period from the 10th to 14th day after operation. The level of TRPM8 protein in L5 dorsal root ganglion (DRG) ipsilateral to nerve injury was significantly increased on the 4th day after CCI, and reached the peak on the 10th day, and remained elevated on the 14th day following CCI. This time course of the alteration of TRPM8 expression was consistent with that of CCI-induced hyperalgesic response of the operated hind paw. Besides, activation of cold receptor TRPM8 of CCI rats by intrathecal application of menthol resulted in the inhibition of mechanical allodynia and thermal hyperalgesia and the enhancement of cold hyperalgesia. In contrast, downregulation of TRPM8 protein in ipsilateral L5 DRG of CCI rats by intrathecal TRPM8 antisense oligonucleotide attenuated cold hyperalgesia, but it had no effect on CCI-induced mechanical allodynia and thermal hyperalgesia.</p> <p>Conclusions</p> <p>TRPM8 may play different roles in mechanical allodynia, cold and thermal hyperalgesia that develop after nerve injury, and it is a very promising research direction for the development of new therapies for chronic neuroapthic pain.</p

    The use of decomposition methods in real-world treatment benefits evaluation for patients with type 2 diabetes initiating different injectable therapies: findings from the Initiator study

    Get PDF
    Onur Başer (MEF Author)Background: Determining characteristics of patients likely to benefit from a particular treatment could help physicians set personalized targets. OBJECTIVES: To use decomposition methodology on real-world data to identify the relative contributions of treatment effects and patients' baseline characteristics. METHODS: Decomposition analyses were performed on data from the Initiation of New Injectable Treatment Introduced after Antidiabetic Therapy with Oral-only Regimens (INITIATOR) study, a real-world study of patients with type 2 diabetes started on insulin glargine (GLA) or liraglutide (LIRA). These analyses investigated relative contributions of differences in baseline characteristics and treatment effects to observed differences in 1-year outcomes for reduction in glycated hemoglobin A1c (HbA1c) and treatment persistence. RESULTS: The greater HbA1c reduction seen with GLA compared with LIRA (-1.39% vs. -0.74%) was primarily due to differences in baseline characteristics (HbA1c and endocrinologist as prescribing physician; P < 0.050). Patients with baseline HbA1c of 9.0% or more or evidence of diagnosis codes related to mental illness achieved greater HbA1c reductions with GLA, whereas patients with baseline polypharmacy (6-10 classes) or hypogylcemia achieved greater reductions with LIRA. Decomposition analyses also showed that the higher persistence seen with GLA (65% vs. 49%) was mainly caused by differences in treatment effects (P < 0.001). Patients 65 years and older, those with HbA1c of 9.0% or more, those taking three oral antidiabetes drugs, and those with polypharmacy of more than 10 classes had higher persistence with GLA; patients 18 to 39 years and those with HbA1c of 7.0% to less than 8.0% had higher persistence with LIRA. CONCLUSIONS: Although decomposition does not demonstrate causal relationships, this method could be useful for examining the source of differences in outcomes between treatments in a real-world setting and could help physicians identify patients likely to respond to a particular treatment. Copyright (C) 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.WOS:000419245600004Scopus - Affiliation ID: 60105072PMID: 29241884Science Citation Index Expanded - Social Sciences Citation IndexQ1ArticleUluslararası işbirliği ile yapılan - EVETAralık2017YÖK - 2017-1

    (meso-5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetra­azacyclo­tetra­deca-4,11-diene)copper(II) bis­[O,O′-bis­(4-methyl­phen­yl) dithio­phosphate]

    Get PDF
    The title compound, [Cu(C16H32N4)](C14H14O2PS2)2 or [Cu(trans[14]dien)][S2P(OC6H4Me-4)2]2, where trans[14]dien is meso-5,7,7,12,14,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­deca-4,11-diene, was obtained by the reaction of [Cu(trans[14]dien)](ClO4)2 and [(C2H5)2NH]2 [S2P(OC6H4Me-4)2]2. The CuII atom lies on a centre of inversion and possesses a relatively undistorted square-planar coordination arrangement with four N atoms of the macrocyclic tetra­mine trans[14]dien [Cu—N = 1.9716 (19) and 2.0075 (19) Å]. The two uncoordinated [(4-MeC6H4O)2PS2]− groups act as counter-ions to balance the charge and inter­act with the [Cu(trans[14]dien)]2+ complex cation through N—H⋯S hydrogen bonds

    Photoacoustic tomography and molecular fluorescence imaging: dual modality imaging of small animal brains in vivo

    Get PDF
    We present a dual modality imaging technique by combining photoacoustic tomography (PAT) and near-infrared (NIR) fluorescence imaging for the study of animal model tumors. PAT provides high-resolution structural images of tumor angiogenesis, and fluorescence imaging offers high sensitivity to molecular probes for tumor detection. Coregistration of the PAT and fluorescence images was performed on nude mice with M21 human melanoma cell lines with αvβ3 integrin expression. An integrin αvβ3-targeted peptide-ICG conjugated NIR fluorescent contrast agent was used as the molecular probe for tumor detection. PAT was employed to noninvasively image the brain structures and the angiogenesis associated with tumors in nude mice. Coregistration of the PAT and fluorescence images was used in this study to visualize tumor location, angiogenesis, and brain structure simultaneously

    Tumor-Derived Exosomal Protein Tyrosine Phosphatase Receptor Type O Polarizes Macrophage to Suppress Breast Tumor Cell Invasion and Migration

    Get PDF
    Tumor-derived exosomes, containing multiple nucleic acids and proteins, have been implicated to participate in the interaction between tumor cells and microenvironment. However, the functional involvement of phosphatases in tumor-derived exosomes is not fully understood. We and others previously demonstrated that protein tyrosine phosphatase receptor type O (PTPRO) acts as a tumor suppressor in multiple cancer types. In addition, its role in tumor immune microenvironment remains elusive. Bioinformatical analyses revealed that PTPRO was closely associated with immune infiltration, and positively correlated to M1-like macrophages, but negatively correlated to M2-like macrophages in breast cancer tissues. Co-cultured with PTPRO-overexpressing breast cancer cells increased the proportion of M1-like tumor-associated macrophages (TAMs) while decreased that of M2-like TAMs. Further, we observed that tumor-derived exosomal PTPRO induced M1-like macrophage polarization, and regulated the corresponding functional phenotypes. Moreover, tumor cell-derived exosomal PTPRO inhibited breast cancer cell invasion and migration, and inactivated STAT signaling in macrophages. Our data suggested that exosomal PTPRO inhibited breast cancer invasion and migration by modulating macrophage polarization. Anti-tumoral effect of exosomal PTPRO was mediated by inactivating STAT family in macrophages. These findings highlight a novel mechanism of tumor invasion regulated by tumor-derived exosomal tyrosine phosphatase, which is of translational potential for the therapeutic strategy against breast cancer

    Trends of hypercholesterolemia change in Shenzhen, China during 1997-2018

    Get PDF
    To demonstrate the trends of hypercholesterolemia change in Shenzhen, China from 1997 to 2018. Participants were residents aged 18 to 69 years in Shenzhen, China, and were recruited using multi-stage cluster sampling. All participants were surveyed about their socio-demographics, lifestyle, occupation, mental health, and social support. Physical measurements and blood samples for subsequent measurements were collected according to a standardized protocol. A total of 26,621 individuals participated in the three surveys with 8,266 in 1997, 8,599 in 2009, and 9,756 in 2018. In both women and men, there was a significant downward linear trend in age-adjusted mean high-density lipoprotein-cholesterol (HDL-C) from 1997 to 2018 (women: 0.17 ± 0.06, p = 0.008 vs. men: 0.21 ± 0.04, p < 0.001). In contrast, the age-adjusted total triglycerides and total cholesterol in both sexes have demonstrated an increasing trend in the past two decades. However, no significant changes in age-adjusted low-density lipoprotein-cholesterol (LDL-C) in both men and women between 2009 and 2018 were found (women: 0.00 ± 0.02, p = 0.85 vs. men 0.02 ± 0.03, p = 0.34). The age-adjusted prevalence of hypercholesterolemia observed a rapid rise from 1997 to 2009 and appeared to be stabilized in 2018, which was similar to the trend of the prevalence of high total triglycerides in women. Changes in trends were varied by different types of lipids traits. Over the observed decades, there was a clear increasing trend of prevalence of low HDL-C (<1.04 mmol/L) in both sexes (women: 8.8% in 1997 and doubled to reach 17.5% in 2018 vs. men was 22.1% in 1997 and increased to 39.1% in 2018), particularly among younger age groups. Hence, a bespoke public health strategy aligned with the characteristics of lipids epidemic considered by sex and age groups needs to be developed and implemented

    Detection of a superconducting phase in a two-atom layer of hexagonal Ga film grown on semiconducting GaN(0001)

    Get PDF
    The recent observation of superconducting state at atomic scale has motivated the pursuit of exotic condensed phases in two-dimensional (2D) systems. Here we report on a superconducting phase in two-monolayer crystalline Ga films epitaxially grown on wide band-gap semiconductor GaN(0001). This phase exhibits a hexagonal structure and only 0.552 nm in thickness, nevertheless, brings about a superconducting transition temperature Tc as high as 5.4 K, confirmed by in situ scanning tunneling spectroscopy, and ex situ electrical magneto-transport and magnetization measurements. The anisotropy of critical magnetic field and Berezinski-Kosterlitz-Thouless-like transition are observed, typical for the 2D superconductivity. Our results demonstrate a novel platform for exploring atomic-scale 2D superconductor, with great potential for understanding of the interface superconductivity

    Maternal Diet Intervention Before Pregnancy Primes Offspring Lipid Metabolism in Liver

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) has a developmental origin and is influenced in utero. We aimed to evaluate if maternal diet intervention before pregnancy would be beneficial to reduce the risk of offspring NAFLD. In our study, female mice were either on a normal-fat diet (NF group), or a high-fat diet for 12 weeks and continued on this diet throughout pregnancy and lactation (HF group), or switched from HF-to-NF diet 1 week (H1N group), or 9 weeks (H9N group) before pregnancy. Compared with the NF offspring, the H1N and HF, but not the H9N offspring, displayed more severe hepatic steatosis and glucose intolerance. More specifically, an abnormal blood lipid panel was seen in the H1N offspring and abnormal hepatic free fatty acid composition was present in both the HF and H1N offspring, while the H9N offspring displayed both at normal levels. These physiological changes were associated with desensitized hepatic insulin/AKT signaling, increased expression of genes and proteins for de novo lipogenesis and cholesterol synthesis, decreased expression of genes and proteins for fatty acid oxidation, increased Pcsk9 expression, and hypoactivation of 5' AMP-activated protein kinase (AMPK) signaling in the HF and H1N offspring. However, these effects were completely or partially rescued in the H9N offspring. In summary, we found that early maternal diet intervention is effective in reducing the risk of offspring NAFLD caused by maternal HF diet. These findings provide significant support to develop effective diet intervention strategies and policies for prevention of obesity and NAFLD to promote optimal health outcomes for mothers and children
    corecore