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Abstract

Non-alcoholic fatty liver disease (NAFLD) has a developmental origin and is influenced in utero. 

We aimed to evaluate if maternal diet intervention before pregnancy would be beneficial to reduce 

the risk of offspring NAFLD. In our study, female mice were either on a normal-fat diet (NF 

group), or a high-fat diet for 12 weeks and continued on this diet throughout pregnancy and 

lactation (HF group), or switched from HF to NF diet 1 week (H1N group), or 9 weeks (H9N 

group) before pregnancy. Compared to the NF offspring the H1N and HF, but not the H9N 

offspring, displayed more severe hepatic steatosis and glucose intolerance. More specifically, an 

abnormal blood lipid panel was shown in the H1N offspring and abnormal hepatic free fatty acid 

composition was present in both the HF and H1N offspring, while the H9N offspring displayed 

both at normal levels. These physiological changes were associated with desensitized hepatic 

insulin/AKT signaling, increased expression of genes and proteins for de novo lipogenesis and 

cholesterol synthesis, decreased expression of genes and proteins for fatty acid oxidation, 

increased Pcsk9 expression, and hypoactivation of AMPK signaling in the HF and H1N offspring. 

However, these effects were completely or partially rescued in the H9N offspring. In summary, we 

found that early maternal diet intervention is effective in reducing the risk of offspring NAFLD 

caused by maternal HF diet. These findings provide significant support for promoting the 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
# corresponding author: Linglin.xie@tamu.edu.
*equal contribution

HHS Public Access
Author manuscript
Lab Invest. Author manuscript; available in PMC 2020 May 20.

Published in final edited form as:
Lab Invest. 2020 April ; 100(4): 553–569. doi:10.1038/s41374-019-0344-4.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



development of effective diet intervention strategies, policy for prevention of obesity and NAFLD, 

and improvement of health outcomes for mothers and children.

Introduction

The rapid rise in obesity and associated diseases throughout the world has major negative 

impacts on human health and healthcare resources. According to data from the National 

Center for Health Statistics, 71.6% of the adult population in the United states from 2015 to 

2016 was overweight or obese in the United States (1). An estimated 18.5% of adolescents 

and US children were obese and nearly one-half of childbearing age women were 

overweight or obese (2, 3). Non-alcoholic fatty liver disease (NAFLD), regarded as the 

hepatic manifestation of metabolic syndrome, affects 10% to 24% of the general population 

in various countries. The prevalence of NAFLD is up to 75% in obese people (4). In recent 

years, the population of NAFLD patients has increased and is becoming younger, perhaps 

due to changes in diet structure and decreased physical activity (5). The American Heart 

Association Council on Epidemiology and Prevention states that obesity among girls and 

women of childbearing age is trans-generational, which may fuel the obesity epidemic for 

decades to come especially among children.

Recent study efforts have been put on investigating maternal over-nutrition to reflect the 

dietary habits of Western society. In both human and animal models, embryos exposed to 

over-nutrition during gestation have increased risks for obesity, diabetes, and other 

complications including NAFLD attributed to catch-up growth, increased adiposity, 

impaired glucose tolerance, impaired insulin sensitivity, and abnormal liver function in 

offspring (6–10). Thus, it has been suggested that prevention of obesity and its related 

diseases may need to begin before pregnancy (11–18). However, previous studies that 

evaluated pre-pregnancy dietary interventions composed of a balanced diet and regular 

physical activity only focus on the short-term effects on pregnancy outcomes, failing to look 

at the long-term effects of maternal diet on offspring (19–22).

Previously, we conducted a mouse study to evaluate if the transition of maternal diet from 

high-fat (HF) to normal-fat (NF) before pregnancy remediates the obesogenic effects of 

maternal HF diet on offspring 12-weeks post-weaning. We reported that neither a short (1-

week) nor a medium (5-week), but a long-term (9-week) diet transition, effectively avoided 

the effects of maternal HF diet on exacerbating offspring obesity, glucose intolerance, 

adiposity and adipose tissue inflammation (23–25). Additionally, we found a sex-specific 

phenotype wherein male offspring from a dam with HF-to-NF transition one week prior to 

pregnancy had more severe hepatic steatosis than male offspring exposed to a continuous 

maternal HF diet (25). These results suggested that a proper maternal adaptation period 

before pregnancy is important to “re-program” offspring energy metabolism, especially fatty 

acid metabolism in the liver. We hypothesize that starting a maternal diet transition early 

enough would be beneficial in reducing NAFLD in male offspring. Thus, the aim of this 

study was to investigate if a maternal diet intervention could release the “priming” effects of 

maternal HF diet on NAFLD observed in male offspring and to understand the underlying 

mechanisms.
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Materials and Methods

Experimental design (Table 1)

Four-week-old female mice (mixed background) were fed either a normal fat diet (10% kcal 

from fat, NF group) or a high fat diet (60% kcal from fat, HF) for 12 weeks. The female 

mice on HF diet either continued a HF diet through gestation and lactation (HF group), or 

were transferred to a NF diet at either one-week (H1N group) or nine-weeks (H9N group) 

prior to pregnancy. To ensure different diet transition periods, female mice were housed 

together with breeding males for 24 hours, at the end of diet transition period (1 week or 9 

weeks). The vaginal plug was also checked and recorded early the next morning to confirm 

if timely mating occurred. The breeding pairs were then separated and the female mouse was 

single housed until the end of lactation stage. The H1N and the H9N mothers remained on 

the NF diet through gestation and lactation. Our previous study has demonstrated a sex-

dependent phenotype of fatty liver disease in offspring mice, with female offspring only 

displaying very mild fat deposition regardless of treatment groups (24, 25). Thus, three male 

offspring were randomly selected per litter from five different litters for a total of 15 

(average litter size = 8) for each group and were given a HF diet for 12 weeks post-weaning 

prior to sacrifice. A separate group, birthed from the breeders who adhered to NF diet, was 

fed NF diet for 12 weeks and utilized as a reference control group (REF group).

Mouse experiments were conducted according to a protocol reviewed and approved by the 

Institutional Animal Care and Use Committee of the University of North Dakota and Texas 

A&M University, in compliance with the USA Public Health Service Policy on Humane 

Care and Use of Laboratory Animals.

Diet Composition

Diets were purchased from Research Diets, LLC (New Brunswick, NJ). The normal fat diet 

(Cat#D12450B) had an energy density of 3.771 kcal/g (10% fat energy, 70% carbohydrate 

energy, and 20% protein energy). The HF diet (Cat#D12492) had an energy density of 5.157 

kcal/g (60% fat energy, 20% carbohydrate energy, and 20% protein energy). The fat source 

is composed of 92% lard and 8% soybean oil.

Antibodies

Antibodies against IRS1, P-IRS1–612, AKT, p-AKT-473, PPAR-α, Srebp1, AMPK, p-

AMPK-α were purchased from Cell Signaling Technology (Cell signaling Technology, 

Danvers, MA).

Western Blots

About 100 mg of frozen tissue was homogenized in 1 ml of lysis buffer (10 mL of RIPA, 1 

complete ULTRA Tablet, 1 tablet of Phosphatase inhibitor, and 100 μL of 200 mM PMSF). 

The protein concentration was determined using a BCA protein concentration assay. 

Aliquots of 150 μg of total protein were run through routine western blots.
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Realtime-PCR (RT-PCR)

Total RNA was extracted from visceral adipose tissue using Trizol reagent (Invitrogen). 

cDNA was converted using Ready Script cDNA synthesis mix (Sigma Aldrich, St. Louis, 

MO). Primers used are listed in Table 2. RT-PCR was performed using a POWER SYBER 

Green PCR Master Mix from Applied Biosystems on a CFX384 Touch Real-Time PCR 

Detection System (BioRad Laboratories, Hercules CA). Results were analyzed using the 

ΔΔCT method with GAPDH as the normalization control (26).

Intraperitoneal Glucose Tolerance Test (IPGTT)(25)

Offspring from each experimental group were fasted overnight and were subsequently 

subjected to an IPGTT the following morning. Glucose tolerance tests were performed as 

previously reported (25, 27). Glucose tolerance was assessed by area under the curve (AUC) 

analysis.

Mass spectrometry (MS) for hepatic free fatty acid, triglyceride and cholesterol esters

Liver samples were pulverized under liquid nitrogen conditions to a fine homogeneous 

powder and about 10 mg was extracted according to the Folch procedure (28). Fatty acids 

(FA) internal standards were added before extraction. A one hundred microliter aliquot was 

subjected to saponification to release FA before UPLC-MS analysis. Fatty acids were 

resolved on the ultra-performance liquid chromatography mass spectrometer (UPLC-MS) 

column and quantified against FA stable isotope labeled internal standards using a 

quadrupole time-of-flight mass spectrometer as previously described (29, 30). Briefly, the 

liquid chromatography (LC) system consisted of a Waters ACQUITY UPLC pump with a 

well-plate autosampler (Waters, Milford, MA) equipped with an ACQUITY UPLC HSS T3 

column (1.8 μM, 100 A pore diameter, 2.1×150 mm, Waters) and an ACQUITY UPLC HSS 

T3 Vanguard precolumn (1.8 μM, 100 A pore diameter 2.1 × 5 mm, Waters). The column 

temperature was 55 °C and the autosampler temperature was 8 °C. The flow rate was 0.3 

mL/min. Solvent A consisted of acetonitrile : water (40 : 60) with 10 μM ammonium acetate 

and 0.025% acetic acid. Solvent B was acetonitrile:2-propanol (10 : 90) containing 10 μM 

ammonium acetate and 0.02% acetic acid. Solvent B was initially held at 35% for 0.1 

minutes and was then increased to 99% over 20 minutes using a linear gradient. Solvent B 

was held at 99% for 8 min before returning to initial conditions over 0.5 minutes. The 

column was equilibrated for 2.5 min between injections. The Q-TOF (Synapt G2-S, Waters) 

with electrospray ionization in negative ion mode was used for quantification. The cone 

voltage was 20 V and the capillary voltage was 1.51 kV. The source and desolvation 

temperatures were 110 °C and 350 °C respectively. The analyzer was operated with an 

extended dynamic range at 10,000 resolution (fwhm at m/z 554) with an acquisition time of 

0.1s. MSE mode was used to collect data with the T-wave element alternating between a low 

energy of 2V and a high energy state where the transfer T-wave element voltage was 10–25 

V (29). The cone gas flow rate was 10 L/h and the desolvation gas flow was 1,000 L/h. 

Leucine enkephalin (400 pg/μL, ACN:water, 50 : 50 by volume) was infused at a rate of 10 

μL/min for mass correction. MassLynx V4.1 software (Waters) was used for instrument 

control, acquisition, and sample analysis. Saturated long chain FA was quantified against 

16:0-[U-13C], medium chain FA against 14:0-d27, short chain – against 10:0-d19, mono-
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unsaturated – against 18:1-d17, di-unsaturated – against 18:2-[U-13C], and polyunsaturated – 

against 20:4-d8.

L-Carnitine detection

About 100 mg (±2 mg) of frozen liver tissue was homogenized after adding 4 mL methanol 

and 0.85 mL water per gram tissue. The methanol-chloroform method was used to separate 

the polar metabolites (upper methanol/water phase, contains L-Carnitine) and the lipophilic 

compounds (lower chloroform phase). Upper layer solvents were removed using a speed 

vacuum concentrator and under a stream of nitrogen. The samples and standard (Acetyl-d3-

L-carnitine, CDN isotopes Quebec) were analyzed on a Waters ACQUITY UPLC TQD MS 

system (Waters Corp., Milford, MA) equipped with a column heater, sample manager, 

binary solvent manager, photodiode array eλ (PDA) detector, and ESI source. Samples were 

separated on an Acquity UPLC BEH HILIC column (100 mm × 2.1 mm (i.d), 1.7 um 

particle size). The internal standards were detected in positive ion mode with source 

temperature at 150 °C, desolvation temperature at 400 °C, desolvation gas (N2) flow rate at 

700 L/h, and cone gas flow rate at 50 L/h. Capillary voltage was set at 3.5 kV and collision 

gas flow (Ar) at 0.15 L/h. Dwell time was set at 0.05 s with a span of 0.1 Da. The Cone and 

collision energy voltage, and MRM mass transitions are summarized in Table 3.

Hepatic triglyceride (TG) measurement

Blood lipid levels were measured using an Adipogenesis Detection Kit (Abcam Inc, 

#ab102513, Cambridge, UK) according to the manufacturer’s instructions and as reported 

previously (25).

Blood Lipid Panel

The mouse serum total cholesterol, free cholesterol, HDL and LDL/VLDL cholesterol levels 

were detected using an HDL and LDL/VLDL cholesterol assay kit (Abcam, Cambridge, 

UK). Following the manufacturer’s instructions, the cholesterol standard curve was prepared 

by diluting the provided cholesterol standard. The concentration of lipid was calculated 

based on the standard curve generated.

Blood C-peptide content

Blood C-peptide level was detected using the ALPCO Mouse C-peptide ELISA kit 

(ALPCO, Salem, NH) according to the user’s manual.

RNA-Seq and data analysis

Illumina next-generation sequencing was performed at University of Chicago Genomics 

Core (Chicago, USA) using Illumina HiSeq2000 instruments. The RNA-Seq data analysis 

was performed as published previously (31). Briefly, RNA-Seq short reads were mapped to 

mouse reference genome GRCm38 using a Bowtie2 package. The gene expression level was 

then quantified by a Cufflink package. The hierarchical clustering analysis (HCA) was used 

to assess the global gene-expression variations. Regression analysis was used to identify the 

genes that were correlated with the different maternal diet. Genes that showed significant 

correlation were selected by controlling the false discovery rate at 10%. The activated gene 
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pathways were analyzed using a hypergeometric distribution-based method, which was 

developed in house using R programing language. The biochemical pathway information 

was obtained from KEGG (www.genome.jp/kegg).

Statistical Analysis

Measurements for single time points were analyzed by Fisher’s least significant difference 

test to take into account the multiple comparisons between groups REF, NF, HF, H1N, and 

H9N. Fisher’s least significant difference test was performed by first carrying out a one-way 

analysis of variance for all treatment groups. For the longitudinal data such as body weight, 

a linear mixed model was used for the analysis of repeated measures with each individual 

mouse as a random effect. A p-value less than 0.05 is considered a significant difference, 

while a p-value less than 0.1 is considered a marginal significance. All analyses were carried 

out using SAS JMP software (SAS Institute Inc., Cary, NC, USA). Data is presented as 

Mean ± SE.

Results

The H1N diet resulted in rapid body weight gain and glucose intolerance in male offspring, 
while the H9N diet only caused moderate body weight gain

The weekly food consumption (Fig 1A) of male offspring mice was recorded for calculating 

the weekly energy consumption via diet (Fig 1B). Food consumption was the same among 

all groups; however, the energy consumption of the REF group on post-weaning NF diet was 

significantly lower than the other four groups on post-weaning HF-diet (Figs 1A and B). The 

energy consumption among NF, HF, H1N and H9N groups were not different (Fig 1B). The 

offspring mice were weaned at similar body weights. On the post-weaning HF-diet, all 

offspring constantly gained weight during the 12-week experimental period, with H1N 

offspring gaining the fastest. Longitudinal analysis of repeated measurements showed that 

H1N offspring gained significantly more weight than the REF or NF offspring. Interestingly, 

both the HF offspring and the H9N offspring weighed marginally more than the REF 

offspring (Fig 1C, P = 0.093 for the HF offspring and P = 0.071 for the H9N offspring). We 

further weighed the posterior subcutaneous fat tissue and the gonadal adipose tissue of the 

offspring mice. The results showed significantly more visceral fat in the NF, HF and H1N 

offspring compared to the REF offspring, with the H1N offspring having the largest amount 

(Fig 1D). The amount of subcutaneous fat pad from the highest to the lowest rank is H1N > 

H9N ≈ HF ≈ NF ≈ REF (Fig 1D).

The IPGTT was performed on the offspring at the end of week 9. At this time point, all 

offspring had similar fasting glucose levels (Fig 1E). The NF offspring were glucose tolerant 

at checkpoint; however, neither the HF nor the H1N offspring were glucose tolerant (Figs 1E 

and F). In contrast, the H9N offspring were glucose tolerant (Figs 1E and F). Similarly, the 

H1N offspring, but not the H9N nor HF offspring, had higher levels of blood C-Peptide than 

that of the REF offspring. (Fig 1G).

Zhou et al. Page 6

Lab Invest. Author manuscript; available in PMC 2020 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.genome.jp/kegg


The maternal HF and H1N diets resulted in hepatic steatosis and a disrupted lipid panel in 
male offspring, while the maternal H9N diet avoided such effects

We next evaluated if lipid metabolism in the liver was affected by different maternal diet 

transitions before pregnancy. Histology showed that the NF offspring only had 

microvesicular fat in hepatocytes instead of visible ballooning cells, in which the nuclei 

remain centrally located and appeared to be indented by the small fat droplets (Fig 2A). 

However, hepatic steatosis was observed in both HF and H1N offspring along with 

ballooning cells that indicated intracellular lipid accumulation. In contrast, fatty acid 

accumulation was not visible in hepatocytes of the H9N offspring.

Using a high-resolution UPLC-MS/MS method, we determined whether the major hepatic 

long or very long chain free fatty acid (FFA) panel (chain lengths of 12–24 carbons) was 

affected by different maternal diet interventions before pregnancy (Figs 2B–H). The total 

FFA was significantly greater in H1N and HF offspring than in the NF offspring (Fig 2B). In 

addition, the saturated FFA (SFA) in the liver of H1N and HF offspring was higher than that 

of NF offspring (Fig 2B). Of note, the H1N and HF offspring displayed higher amounts of 

monounsaturated FFA (MUFA) and polyunsaturated FFA (PUFA). Generally, the HF and 

H1N diets increased most of the major SFA (Fig 2C), MUFA (Fig 2D) and PUFA (Fig 2E), 

while the H9N diet avoided such effects in the FFA panel in hepatocytes. Importantly, 

offspring of NF, HF, and H1N groups significantly enhanced the ratio of oleic acid (18:1) to 

stearic acid (18:0) compared to REF offspring whereas H9N offspring had the level 

recovered (Fig 2F). In addition, the HF diet significantly decreased the ratio of C18:0 to 

C16:0. Compared to the NF offspring, the level of C18:0 to C16:0 in HF offspring was 

similar, but this ratio was much lower in H1N offspring when compared to NF offspring. 

However, H9N offspring had no changes in this ratio (Fig 2G). These results suggest that 

maternal diet differentially affects the hepatic FFA panel in offspring, not only in quantity 

but also in FFA subtype.

With a disruption of the hepatic FFA panel, we asked if the hepatic TG content was also 

altered by different maternal diet interventions. The NF offspring had higher TG content in 

the liver, showing a positive effect of post-weaning HF diet (Fig 2H). Both the HF and H1N 

offspring had increased TG content. Surprisingly H9N offspring had lower TG content than 

NF offspring, which made it a level similar to REF offspring (Fig 2H). We further measured 

several major types of TG and found that the NF, HF, and H1N groups were unable to be 

clustered, which were distinct from the cluster of H9N and REF offspring (Fig 2I).

The H1N offspring had disrupted blood lipids, which were normal in the H9N offspring

We wondered if the disrupted hepatic FFA and TG panel in HF and H1N offspring was 

associated with disrupted blood lipid levels. The post-weaning HF diet (NF vs. REF) did not 

affect the total cholesterol (TC) (Fig 3A), total amount of free cholesterol (FC) (Fig 3B) or 

blood VLDL and LDL content (VLDL+LDL) (Fig 3C), but significantly decreased HDL 

content (Fig 3D). The ratio of TC/HDL and (LDL+ VLDL)/HDL were known to be 

associated with a higher risk of cardiovascular disease (32). The maternal HF diet did not 

seem to change the blood lipid panel. However, H1N offspring had all six biochemical 

parameters significantly increased. In contrast, H9N offspring had an entirely normal lipid 
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panel (Figs 3A–F). With an overall similar trend to the blood lipid panel, the hepatic 

cholesterol ester content from the highest to the lowest was H1N > HF ≈ NF > REF ≈ H9N 

(Fig 3G).

RNA-Seq analysis identified significant KEGG pathways involving lipid metabolism by 
different maternal diet interventions

Next, we investigated the molecular mechanism contributing to the phenotypical differences 

between H1N and the H9N offspring. For each sample, 20–25 million short reads were 

generated using Illumina HiSeq 2000, and >90% of short reads were mapped to the mouse 

reference genome GRCm38. Hierarchical clustering analysis of the 2,000 genes with the 

largest variance across the groups showed that HF and H1N had similar transcript profiles. 

The H9N offspring clustered with the H1N and the HF groups, which are distinct from the 

NF offspring (Fig 4A). We found 4458, 3314, and 3707 differentially expressed genes 

(DEGs) for HF, H1N and H9N respectively when compared with NF offspring using a false 

discovery rate 0.05 as the cutoff. There were 2,466 DEGs overlapping between the 

comparisons of HF and H1N versus NF, as shown by Venn diagram. There were 2,191 

DEGs overlapping between H9N and H1N versus NF. The number of overlapped DEGs 

between the comparisons of H9N and HF versus NF was 2,134. There were 1,624 

overlapping DEGs among all three comparisons (Fig 4B).

In addition, gene ontology (GO) analysis identified distinct KEGG (Kyoto Encyclopedia of 

Genes and Genomes) pathways following HF, H1N, and H9N diets. We noticed several 

significant KEGG pathways were involved in lipid metabolism and homeostasis, including 

NAFLD, fat digestion and absorption, fatty acid elongation, fatty acid degradation, linoleic 

acid metabolism, biosynthesis of unsaturated fatty acids, oxidative phosphorylation, 

cholesterol metabolism, steroid hormone biosynthesis, primary bile acid synthesis, bile 

secretion, and glycerolipid metabolism (Fig 4C). Overall, HF offspring had more DEGs of 

the significant pathways than H1N offspring, which had more DEGs than H9N offspring. 

Compared to the NF offspring, three pathways (NAFLD, oxidative phosphorylation and 

cholesterol metabolism) had more than or close to 50% of DEGs in HF offspring, while the 

number decreased in H9N offspring to half of that of HF offspring. The H1N offspring had 

the lowest percentile of DEGs in the pathways for fatty acid elongation and fatty acid 

degradation. There were also pathways with similar or slightly lower percentage of DEGs 

among HF, H1N, and H9N offspring including linoleic acid metabolism, biosynthesis of 

unsaturated fatty acid, steroid hormone biosynthesis, primary bile acid biosynthesis, and bile 

secretion. Among all these pathways, only the pathway for oxidative phosphorylation was 

insignificantly associated with the H9N diet (Fig 4D). We further performed a hierarchical 

clustering analysis to show that the DEGs, involved in the mentioned signaling pathways for 

lipid metabolism, of H1N offspring clustered together with HF offspring, which further 

grouped with those of H9N offspring (Fig 4E). The DEGs of NF offspring was distinct from 

the hierarchy of HF, H1N, and H9N. These results suggest that different maternal diets 

differentially affected the lipid metabolism at the mRNA level.
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The maternal HF and H1N diets increased the gene expression for fatty acid and 
cholesterol biosynthesis while the H9N diet had no such effects

To confirm that different maternal diet transition strategies affect lipid metabolism 

differently at the gene expression level, we first measured the expression of key lipogenesis 

genes. Insulin promotes lipogenesis by activation of sterol regulatory element binding 

protein 1c (SREBP1c), a transcription factor that promotes the expression of lipogenic genes 

including Fasn and Acc (33). The HF and H1N offspring had significantly higher levels of 

SREBP1c than REF offspring, and its level in HF offspring was higher than that of NF 

offspring. However, the H9N offspring had a similar amount of SREBP1c as the NF and 

REF offspring (Fig 5A). The changes of Srebp1c found at the RNA level were similar to 

levels measured at the protein level (Fig 5B, Srebf1). Consistently, we observed significantly 

enhanced Fasn, Acc1, and Acc2 expression in the HF and H1N hepatocytes versus the NF 

hepatocytes, whereas these gene expression changes were either completely (Acc1 and 

Acc2) or partially (Fasn) returned to normal in H9N offspring hepatocytes (Fig 5B). We 

further measured two important genes, one for fatty acid elongation (Elovl6) and the other 

for fatty acid desaturation (Scd1). The Elovl6 expression was remarkably elevated in HF and 

H1N offspring versus NF offspring, while completely recovered in H9N offspring (Fig. 5B). 

Similarly, HF and H1N offspring had higher expression of Scd1 than NF offspring, while 

H9N offspring expressed a similar level of Scd1 as NF offspring. In addition, Cd36, an 

important gene encoding fatty acid translocase for selective cholesteryl ester and fatty acid 

uptake, was upregulated in H1N offspring compared to NF offspring, while HF and H9N 

offspring had similar expression levels (Fig 5B).

Srebp-2 is an important transcription factor that regulates cholesterol metabolism (34). The 

Srebp-2 expression was higher in the HF and H1N offspring compared to NF offspring liver 

while H9N offspring had expression levels similar to NF offspring (Fig 5C). We further 

assessed the expression of key genes encoding the rate-limiting enzyme for de novo 

cholesterol biosynthesis, Hmgcr and Hmgcs1. Clearly, both the HF and H1N diet 

significantly enhanced the expression of both genes, while the H9N diet avoided such effects 

(Fig 5C). Cyp51a1 is the only cytochrome P450 enzyme involved in de novo cholesterol 

biosynthesis (35). Expression of Cyp51a1 was significantly higher in HF and H1N offspring 

compared to NF offspring, while Cyp51a1 expression was partially retracted in H9N 

offspring. (Fig 5C HF vs. H9N: 7.129 ± 0.509 vs. 3.230 ± 0.363, P < 0.05). These results 

suggested an increase in de novo cholesterol biosynthesis in HF and H1N offspring.

Furthermore, we observed a 9-fold increase in Pcsk9 expression in HF (10.04±0.12) and 3-

fold increase in H1N offspring (3.97±0.15) compared to NF offspring (1.00±0.23). In 

contrast, only a 2-fold increase was measured in H9N offspring (2.98±0.61) (Fig 5D). We 

did not detect expression differences of Abca1 and Ldlr among the groups.

The HF and H1N diet desensitized the Insulin/AKT signaling in liver, while the H9N diet 
avoided such effects

In hepatocytes, insulin sensitivity was disrupted by the post-weaning HF diet, evidenced by 

over-phosphorylation of IRS1 at Ser636 (p-IRS1636) in the NF offspring. The maternal HF 

and H1N diets further over-phosphorylated IRS1 at Ser636 (Figs6 A–C) and thus resulted in 
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the inhibition of insulin signaling that dephosphorylates its downstream p-AKT at Ser473 

(Figs 6A and E). In contrast, the maternal H9N diet avoided such effects by normalizing the 

phosphorylation of IRS1 and its downstream AKT. Furthermore, we measured several key 

genes whose hepatic expression reflects insulin sensitivity including Igf1, Insig1, Insig2a, 
Insr, Lepr, Adipor1, and Adipor2. Both the maternal HF and the H1N diet significantly 

decreased the expression of Lepr, Adipor1, and Adipor2 in offspring liver (Fig 6F). 

However, their expressions were recovered in H9N offspring (Fig 6F). Although there was a 

decreasing trend for the expression of Igf1, Insig1, Insig2a, and Insr in the HF and H1N 

offspring versus the NF offspring, the changes were not significant. To be noted, the 

expression of Insig2a (0.722 ± 0.039 vs. 1.412 ± 0.118, p < 0.05 compared to H1N group) 

and Igf1 (0.731 ± 0.020 vs. 1.188 ± 0.122, p < 0.05 compared to H1N group) in H9N 

offspring was significantly higher than H1N offspring and was similar to the REF offspring.

The maternal HF and H1N diets inhibited hepatic AMPK signaling activity and decreased 
expression of β-oxidation related genes, while the H9N diet avoided such effects

We measured the activity of AMPK signaling to evaluate if changes in lipid metabolism in 

HF, H1N, and H9N offspring were associated with its deactivation or overactivation. We 

observed decreased AMPK expression in the NF offspring, but not the other groups (Figs 7A 

and B). The results showed a decreased ratio of p-AMPK-α/GAPDH, in the NF, HF, and 

H1N groups compared to the REF offspring (Figs 7A and C). The levels of p-AMPK-α/

AMPK-α was significantly lower in HF and H1N offspring than NF or REF offspring (Figs 

7A and D). However, these ratios in H9N offspring were not different from REF or NF 

offspring (Figs 7D and E). These results suggested that the HF and H1N diet, but not the 

H9N diet, deactivated AMPK signaling.

Next, we evaluated the level of β-oxidation in the liver by measuring the expression of key 

modulators and genes involved. Compared to NF offspring, both HF and H1N offspring 

decreased expression of PPAR-α protein in the liver, while H9N offspring had a similar 

expression of PPAR-α (Fig 7E). Consistently, L-Carnitine content in the liver significantly 

decreased in the HF offspring while significantly increased in the H9N offspring compared 

to NF offspring (Fig 7F). In addition, we measured the expression of key genes for fatty acid 

degradation and β-oxidation, which include Cpt1a, Cpt1b, Cpt2, Hmgcs2, Acsl1, and 

Mlycd. Significantly lower expressions of Hmgcs2 and Acsl1 were observed in HF offspring 

compared to NF offspring. In addition to Hmgcs2 and Acsl1 downregulation, H1N offspring 

also had decreased hepatic expressions for Cpt1a, Cpt1b, and Cpt2 (Fig 7G). Importantly, 

the expression of all these genes in H9N offspring were not different from NF offspring. 

These results suggest an inhibition of β-oxidation in the HF and H1N offspring liver, which 

was not observed in the H9N offspring.

Discussion

Previous animal studies have shown that western-style obesogenic diets prime NAFLD in 

offspring adulthood (24, 25, 36–43), providing strong evidence that greater focus is needed 

on maternal metabolic health prior to and during pregnancy. Thus, it is important to know 

the long-term effectiveness and etiology of maternal pre-pregnancy dietary intervention on 
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mitigating the deleterious effects of maternal HF diet on offspring NAFLD risk. This new 

knowledge will promote the development of effective diet intervention strategies and policy 

for prevention of obesity and NAFLD and improvement of health outcomes for mothers and 

children. In the current study, we showed that the HF and H1N offspring had more severe 

hepatic steatosis than the NF and H9N offspring, suggesting that simply switching to a NF 

diet before pregnancy and not allowing a proper transition period was not beneficial in 

reducing the risk for offspring NAFLD. In our model, the H1N diet causes an even more 

severe phenotype of metabolic dysregulation than the HF and NF offspring, evidenced by 

more body weight gain, glucose intolerance, hepatic steatosis, and hyperlipidemia. However, 

the H9N diet has a beneficial effect indicated by glucose tolerance, no NAFLD, and normal 

blood lipid panel in offspring. In humans, the diagnosis of NAFLD is strongly predictive of 

insulin resistance (44, 45). Similarly, the HF and H1N hepatocytes were less sensitive to 

insulin signaling due to inhibited Insulin/Akt signaling and lower expression of genes 

responsible for insulin sensitivity. In contrast to the HF and H1N diet, the H9N diet did not 

cause these damaging effects of maternal HF diet by promoting normal Insulin/Akt signaling 

and a normal expression of genes involved in insulin signaling.

We found that different maternal diet interventions differentially affected the offspring lipid 

panel. Abnormal cellular lipid composition is lipotoxic as it can lead to toxic lipid 

accumulation, organelle dysfunction, cell injury, and chronic inflammation (46, 47). Taking 

into account that TG is an inert form of lipid storage that protects against lipotoxicity (48), 

changes in hepatic FFAs of offspring is critical for understanding how different maternal diet 

interventions led to different phenotypes of NAFLD. The significantly elevated total amount 

of FFAs in offspring liver by the HF diet and H1N diet, and the normal amount of FFAs by 

the H9N diet suggest that different maternal diets before pregnancy prime the quantity of 

hepatic FFAs in offspring. In addition to quantity, the composition of FFAs is various among 

groups treated with different maternal diet interventions. In our model, increased MUFAs 

and PUFAs in HF and H1N offspring versus NF offspring, suggests that maternal diets 

prime the desaturation of SFAs. It is not clear if the increasing MUFAs and PUFAs are 

simply due to overall higher amount of SFAs as substrates, or due to enhanced desaturation 

activity in these offspring. We also reported two associations: one between increased C18:1/

C18:0 ratio and increased expression of Scd1, and the other between decreased C18:1/C18:0 

ratio and increased expression of Elovl6. Both trends were seen in HF and H1N offspring, 

but not among H9N offspring. The association between C18:1/C18:0 ratio and Elovl6 
expression might suggest and be explained by a deactivation of Elovl6 enzyme in the HF 

and H1N offspring which was averted in H9N offspring. Actually, while Elovl6 gene 

overexpression promotes steatohepatitis (49), increased C16:0 from C14:0 with decreased 

activity of Elovl6 enzyme is recently reported in the liver of NASH patients (50). 

Noteworthily, previous human studies of NAFLD patients reported increased SFAs, MUFAs, 

C18:1/C18:0 ratio, and decreased C18:0/C16:0 ratio associated with the severity of NAFLD 

(50–52). Our HF and H1N offspring displayed changes of the mentioned biomarkers in 

parallel with more severe hepatic steatosis than H9N and NF offspring, confirming this 

association reported in human studies. This suggests new biomarkers for the progression of 

NAFLD.
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Our study discloses the various mechanisms through which different maternal diets prime 

lipid metabolism in offspring liver. A previous study has shown that hepatic de novo 

lipogenesis (DNL) is marginal in fetal liver and the expression of genes involved in DNL is 

not significantly changed with over-nutrition exposure in utero (53). In our study, the HF and 

H1N offspring had desensitized insulin signaling, higher expression of genes involved in 

DNL and de novo cholesterol synthesis, and increased Srebp-1 expression under post-

weaning HF diet compared to the NF offspring. This result is consistent with multiple 

studies showing that in utero exposure to HF diet primes hepatic lipid metabolism under 

malnutrition, such that it worsens the NAFLD phenotype in offspring fed on post-weaning 

HF diet (40, 41, 54–56). To be noted, the H9N diet but not the H1N diet avoided the adverse 

effects of maternal HF diet to alter the molecular markers of lipogenesis. These results 

support the concept that maternal diet during the gestational and pre-pregnancy stage 

potentiates postnatal metabolic liver disease via modification of hepatic lipogenesis. We also 

identified the deactivation of FA oxidation to be the cause of hepatic lipid accumulation seen 

in HF and H1N offspring. Others have demonstrated that adult mice previously exposed to 

overnutrition in utero display decreased FA oxidation under postnatal HF diet (55, 57). In 

our study, the deactivation of AMPK signaling, decreased expression of PPAR-α and genes 

involved in FA oxidation in HF and H1N offspring, suggesting an inability to sufficiently 

increase β-oxidation in response to over-nutrition. These molecular changes were not noted 

in the H9N offspring liver. Thus, modification of the capability for FA oxidation could be 

another molecular mechanism that potentiates postnatal NAFLD in offspring of maternal 

overnutrition. Interestingly, most of the lipogenesis genes showed higher expressions in the 

HF offspring than the H1N offspring, while the expression level of genes involved in β-

oxidation was more down-regulated in H1N offspring. These results suggest that maternal 

HF or H1N diet have different modes of pathological action, either by downregulating fatty 

acid oxidation more (H1N diet), or by inducing lipogenesis more (HF diet). Similar 

discrepancy between H1N and HF offspring was also noted in the molecular events involved 

in β-oxidation. Such that, the HF diet yielded lower content of L-carnitine, while the H1N 

diet inhibited expression of genes involved in β-oxidation.

In addition, different maternal diets seemed to result in different capacities for hepatic 

lipoprotein metabolism. Enhanced expression of Pcsk9 was found in HF, H1N, and H9N 

offspring with the lowest increase seen in H9N offspring. PCSK9 binds to the receptor for 

low-density lipoprotein particles (LDLR), which blocks its binding with the LDL-particles, 

preventing hepatic uptake (45). Thus, these results suggest a higher potential for NF 

offspring to process lipoprotein than those offspring (HF, H1N, and H9N) from mothers 

exposed to HF diet previously. Indeed, H1N offspring had an abnormal blood lipid panel 

with hepatic steatosis. The HF offspring had hepatic steatosis, while NF and H9N offspring 

had generally normal lipid panel and no hepatic steatosis. In H9N offspring, lipid 

metabolism was balanced with DNL, FA oxidation level, and Pcsk9 expression partially 

recovered. This potential mechanism needs to be confirmed by future studies focused on 

evaluating the effects of different maternal diets on lipoprotein metabolism. Nonetheless, our 

results suggest that different maternal diets prime offspring lipid metabolism differently.

In summary, our study indicates that an early maternal diet intervention is effective in 

reducing the risk for offspring NAFLD caused by maternal HF diet. Clinically, this 
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encouraging discovery may provide valuable data-supported evidence for designing clinical 

trials to evaluate urgently required intervention strategies to minimize the vicious cycle of 

obesity and its related metabolic complications for future generations.
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Figure1. The H1N diet resulted in rapid body weight gain and glucose intolerance in male 
offspring, while the H9N diet only caused moderate body weight gain.
1A. Food consumption of male offspring mice was recorded weekly since post-weaning for 

12 weeks.

1B. Energy consumption was calculated weekly since post-weaning for 12 weeks.

1C. Body weight of male offspring was recorded weekly since post-weaning for 12 weeks.

1D. Posterior subcutaneous and gonadal adipose tissue of male offspring mice were 

collected and weighed.
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1E. IPGTT was conducted on male offspring mice at the end of 9 weeks of post-weaning HF 

diet.

1F. Area under the curve (AUC) was calculated for the results of IPGTT in male offspring 

mice.

1G. Blood C-Peptide was measured in male offspring mice.

Data is presented as Mean ± SE, n=15 from five litters. * P<0.05 vs. REF group. # P<0.05 

vs. NF group.
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Figure2. The maternal HF and H1N diets resulted in hepatic steatosis and a disrupted lipid panel 
of male offspring, while the maternal H9N diet avoided such effects.
2A. HE staining was performed on the liver tissue of male offspring mice.

2B-E. The major hepatic long or very long chain free fatty acid (L/VLCFFA) panel (chain 

lengths of 12–24 carbons) were measured via high-resolution UPLC-MS/MS method after 

Folch extraction.

2F. The relative amount of oleic acid (18:1) on the stearic acid (18:0) was calculated by 

dividing the amount of oleic acid with the amount of stearic acid.
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2G. The ratio of stearic acid (18:0) to the palmitic acid (16:0) was calculated by dividing the 

amount of stearic acid with the amount of palmitic acid.

2H. Hepatic TG content was detected in male offspring mice.

2I. A heatmap for the types of TG detected via high-resolution UPLC-MS/MS method was 

generated by cluster analysis.

Data is presented as Mean ± SE, n = 5 from 5 litters. * P<0.05 vs. REF group. # P<0.05 vs. 

NF group.
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Figure3. The H1N offspring had disrupted blood lipids, which were normal in the H9N offspring.
3A-D. The blood lipid panel of male offspring mice including the amount of total 

cholesterol (TC), free cholesterol (FC), LDL/VLDL, and HDL was detected using a 

cholesterol assay kit from Abcam.

3E. The ratio of (VLDL+LDL)/HDL was calculated by dividing the sum of VLDL and LDL 

with the amount of HDL.

3F. The ratio of TC/HDL was calculated by dividing the amount of TC with the amount of 

HDL.
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3G. The hepatic cholesterol of male offspring mice was detected using a cholesterol 

detection kit from Sigma.

Data is presented as Mean ± SE, n=5 from 5 litters. * P<0.05 vs. REF group. # P<0.05 vs. 

NF group.
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Figure4. RNA-Seq analysis identified significant KEGG pathways involving lipid metabolism by 
different maternal diet interventions.
4A. RNA-seq analysis using Illumina HiSeq 2000 were performed on NF, HF, H1N and 

H9N offspring livers. Hierarchical clustering analysis was performed on the top 2,000 

DEGs.

4B. DEGs for HF, H1N and H9N when compared with NF offspring using false discovery 

rate 0.05 as the cutoff. DEGs overlapping among the comparisons of HF, H1N and H9N 

versus NF was shown by Venn diagram.
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4C. Gene ontology (GO) analysis identified distinct KEGG (Kyoto Encyclopedia of Genes 

and Genomes) pathways by HF, H1N, and H9N diets. The percentile of DEGs in each 

pathway are plotted.

4D.The –Log (p-value) of the altered KEGG signaling pathway are plotted.

4E. DEGs involved in the lipid metabolism signaling pathways were analyzed by 

Hierarchical clustering analysis.
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Figure 5. The maternal HF and H1N diets enhanced expression of genes in fatty acids and 
cholesterol biosynthesis while the H9N diet avoided such effects.
5A. The expression of SREBP1c in liver tissue was measured by western blots of male 

offspring mice.

5B. The hepatic expression of Srebf1, Fasn, Acc1, Acc2, Elovl6, Scd1, and Cd36 of male 

offspring mice was measured by RT-PCR.

5C. The hepatic expression of Srebf2, Cyp51, Hmgcr, and Hmgcs1 of male offspring mice 

was measured by RT-PCR.
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5D. The hepatic expression of Abca1, Ldlr and Pcsk9 of male offspring mice was measured 

by RT-PCR.

Data is presented as Mean ± SE, n = 5 from 5 litters. * P < 0.05 vs. REF group. # P < 0.05 

vs. NF group.
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Figure6. The HF and H1N diet desensitized Insulin/AKT signaling in liver disrupted by post-
weaning HF diet, while the H9N diet avoided such effects.
6A. The expression of IRS-1, phosphorylation of IRS-1 at Ser636, the expression of Akt, 

phosphorylation of Akt at Ser473 was measured by western blots in male offspring mice.

6B-E. Relative gene expressions are shown as ratios of IRS1/GAPDH, Phospho-IRS-1-

Ser636/ IRS-1, Akt/GAPDH, Phospho-Akt (Ser473)/ Akt.

6F. The expression of Igf1, Insig1, Insig2a, Insr, Lepr, Adipor1, and Adipor2 was measured 

by RT-PCR in the liver of male offspring mice.
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Mice were sacrificed under a fasting status, thus the Insulin and AKT signaling is measured 

at basal level. Data is presented as Mean ± SE, n = 5 from 5 litters. * P < 0.05 vs. REF 

group. # P < 0.05 vs. NF group.
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Figure7. The maternal HF and H1N diets inhibited the hepatic AMPK signaling activity and 
overexpression of β-oxidation related genes, while the H9N diet avoided such effects.
7A. The expression of AMPK-α, phosphorylation of AMPK-α, and PPAR-α were detected 

by western blots in male offspring mice.

7B-E. Relative expressions were expressed as ratios of AMPK-α/GAPDH (B), Phospho- 

AMPK-α/GAPDH (C), Phospho- AMPK-α/ AMPK-α (D) and PPAR-α/ GAPDH(E).

7F. L-Carnitine content was detected via high-resolution UPLC-MS/MS method.
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7G. The hepatic expression of key genes for fatty acid degradation and β-oxidation, 

including Cpt1a, Cpt1b, Cpt2, Hmgcs2, Mlycd, and Acsl1 of male offspring mice was 

measured by RT-PCR.

Data is presented as Mean ± SE, n = 5 from 5 litters. * P < 0.05 vs. REF group. # P < 0.05 

vs. NF group.
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Table 1.

Study Design for maternal diet transition from HF to NF diet before pregnancy.

Maternal Diet Offspring Diet

Pre-pregnancy Transition Pregnancy/Lactation After Weaning

REF (n=15) CD - CD CD

NF (n=15) NF - NF HF

HF (n=15) HF - HF HF

H1N (n=15) HF NF (1 week) NF HF

H9N (n=15) HF NF (9 weeks) NF HF

*
Diet description:

REF Rodent diet: normal chow diet (CD, 4% kcal. from fat)

NF Rodent diet: 10% kcal from fat.

HF Rodent diet: 60% kcal from fat.
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Table 2.

Primers used for mRNA quantification by real-time PCR

Gene Forward primer 5′–3′ Reverse primer 5′–3′

Srebf1 TGACCCGGCTATTCCGTGA CTGGGCTGAGCAATACAGTTC

Fasn GGAGGTGGTGATAGCCGGTAT TGGGTAATCCATAGAGCCCAG

Acc1 ATCCAGGCCATGTTGAGACG AGATGTGCTGGGTCATGTGG

Acc2 CGCTCACCAACAGTAAGGTGG GCTTGGCAGGGAGTTCCTC

Elovl6 GAAAAGCAGTTCAACGAGAACG AGATGCCGACCACCAAAGATA

Scd1 TTCTTGCGATACACTCTGGTGC CGGGATTGAATGTTCTTGTCGT

Cd36 GAACCAAACTGAGGAATGGATCT GAACCAAACTGAGGAATGGATCT

Srebf2 GCAGCAACGGGACCATTCT CCCCATGACTAAGTCCTTCAACT

Cyp51 AACGAAGACCTGAATGCAGAAG GTGGGCTATGTTAAGGCCACT

Hmgcr AGCTTGCCCGAATTGTATGTG TCTGTTGTGAACCATGTGACTTC

Hmgcs1 AAATGCCAGACCTACAGGTGG ATGCTGCATGTGTGTCCCA

Hmgcs2 GAAGAGAGCGATGCAGGAAAC GTCCACATATTGGGCTGGAAA

Abca1 GCTTGTTGGCCTCAGTTAAGG GTAGCTCAGGCGTACAGAGAT

Ldlr AGAGCCTGTGCCGAGATGT TGGTCTGAGTAGATCCAGGAGT

Pcsk9 TTGCCCCATGTGGAGTACATT GGGAGCGGTCTTCCTCTGT

Igf1 CTGGACCAGAGACCCTTTGC GGACGGGGACTTCTGAGTCTT

Insig1 CTAGTGCTCTTCTCATTTGGCG AGGGATACAGTAAACCGACAACA

Insig2a GGAGTCACCTCGGCCTAAAAA CAAGTTCAACACTAATGCCAGGA

Insr TCAAGACCAGACCCGAAGATT TCTCGAAGATAACCAGGGCATAG

Lepr ATGTGCCCTTCCGATATACAACC CGTGTCATCCACTAATCTTCTGG

Adipor1 AGACAACGACTACCTGCTACA GTGGATGCGGAAGATGCTCT

Adipor2 GGAGTGTTCGTGGGCTTAGG GCAGCTCCGGTGATATAGAGG

Cpt1a CTCCGCCTGAGCCATGAAG CACCAGTGATGATGCCATTCT

Cpt1b GCACACCAGGCAGTAGCTTT CAGGAGTTGATTCCAGACAGGTA

Cpt2 CAAAAGACTCATCCGCTTTGTTC CATCACGACTGGGTTTGGGTA

Acsl1 CGCACCCTTCCAACCAACA CGCTATTTCCACTGACTGCAT

Mlycd GCACGTCCGGGAAATGAAC GCCTCACACTCGCTGATCTT

B2m* TTCTGGTGCTTGTCTCACTGA CAGTATGTTCGGCTTCCCATTC

*
B2m was selected as the internal control.
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Table 3.

Cone and collision energy voltage and MRM mass transitions used for L-Carnitine detection

Analyte Cone voltage (V) Collision energy (V) Precursor ion (m/z) Product ion (m/z) Retention time (min)

L-carnitine 30 20 162 85 4.3
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