3,040 research outputs found

    A study on the effect of resveratrol on lipid metabolism in hyperlipidemic mice

    Get PDF
    Background: The content of resveratrol is relatively high in Polygonum cuspidatum Sieb. et Zucc., and the resveratrol has the effect of blood vessel dilating, microcirculation improving, platelet aggregation inhibiting and anti-cancer. The objective of this paper was to study the effect of resveratrol on lipid metabolism in hyperlipidemia mice.Materials andMethods: Through the establishment of an experimental mouse model of hyperlipidemia, the effect of resveratrol on change in total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c) levels in mouse serum were determined.Results: Resveratrol group can apparently reduce TC, TG, LDL-c and AI of hyperlipidemic mice in a dose effect manner.Conclusion: We concluded that resveratrol can effectively reduce blood lipid levels of hyperlipidemic mice.Keywords: Resveratrol; hyperlipidemia; TC; TG; HDL-c; LDL-

    Growth Factors Regulate Expression of Mineral Associated Genes in Cementoblasts

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141778/1/jper1591.pd

    Bacterial Chemotaxis in an Optical Trap

    Get PDF
    An optical trapping technique is implemented to investigate the chemotactic behavior of a marine bacterial strain Vibrio alginolyticus. The technique takes the advantage that the bacterium has only a single polar flagellum, which can rotate either in the counter-clock-wise or clock-wise direction. The two rotation states of the motor can be readily and instantaneously resolved in the optical trap, allowing the flagellar motor switching rate to be measured under different chemical stimulations. In this paper the focus will be on the bacterial response to an impulsive change of chemoattractant serine. Despite different propulsion apparati and motility patterns, cells of V. alginolyticus apparently use a similar response as Escherichia coli to regulate their chemotactic behavior. Specifically, we found that the switching rate of the bacterial motor exhibits a biphasic behavior, showing a fast initial response followed by a slow relaxation to the steady-state switching rate . The measured can be mimicked by a model that has been recently proposed for chemotaxis in E. coli. The similarity in the response to the brief chemical stimulation in these two different bacteria is striking, suggesting that the biphasic response may be evolutionarily conserved. This study also demonstrated that optical tweezers can be a useful tool for chemotaxis studies and should be applicable to other polarly flagellated bacteria

    Nanofluids Containing γ-Fe2O3 Nanoparticles and Their Heat Transfer Enhancements

    Get PDF
    Homogeneous and stable magnetic nanofluids containing γ-Fe2O3 nanoparticles were prepared using a two-step method, and their thermal transport properties were investigated. Thermal conductivities of the nanofluids were measured to be higher than that of base fluid, and the enhanced values increase with the volume fraction of the nanoparticles. Viscosity measurements showed that the nanofluids demonstrated Newtonian behavior and the viscosity of the nanofluids depended strongly on the tested temperatures and the nanoparticles loadings. Convective heat transfer coefficients tested in a laminar flow showed that the coefficients increased with the augment of Reynolds number and the volume fraction

    A Minimal Model of Metabolism Based Chemotaxis

    Get PDF
    Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis

    Ultrahard carbon film from epitaxial two-layer graphene

    Full text link
    Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. To date, there hasn't been any practical demonstration of the transformation of multi-layer graphene into diamond-like ultra-hard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, resisting to perforation with a diamond indenter, and showing a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and sp2-to-sp3 chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than 3 to 5 layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation.Comment: Published online on Nature Nanotechnology on December 18, 201

    Pleural aspergillosis complicated by recurrent pneumothorax: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Pneumothorax as the first symptom of pleural aspergillosis is rare.</p> <p>Case presentation</p> <p>A 31-year-old asthmatic Chinese man presented with recurrent spontaneous pneumothorax and underwent lobectomy due to persistent air leakage. Aspergillus was detected histopathologically in the visceral pleural cavity. He was treated with itraconazole at 200 mg a day, and nine months later he had no recurrent pneumothorax or aspergillus infection.</p> <p>Conclusion</p> <p>Recurrent pneumothorax may be a rare manifestation of aspergillus infection. Aspergillus species infection should be considered in the differential diagnosis of recurrent pneumothorax patients, particularly those with chronic lung disease.</p

    Reversible Keap1 inhibitors are preferential pharmacological tools to modulate cellular mitophagy

    Get PDF
    Mitophagy orchestrates the autophagic degradation of dysfunctional mitochondria preventing their pathological accumulation and contributing to cellular homeostasis. We previously identified a novel chemical tool (hereafter referred to as PMI), which drives mitochondria into autophagy without collapsing their membrane potential (ΔΨm). PMI is an inhibitor of the protein-protein interaction (PPI) between the transcription factor Nrf2 and its negative regulator, Keap1 and is able to up-regulate the expression of autophagy-associated proteins, including p62/SQSTM1. Here we show that PMI promotes mitochondrial respiration, leading to a superoxide-dependent activation of mitophagy. Structurally distinct Keap1-Nrf2 PPI inhibitors promote mitochondrial turnover, while covalent Keap1 modifiers, including sulforaphane (SFN) and dimethyl fumarate (DMF), are unable to induce a similar response. Additionally, we demonstrate that SFN reverses the effects of PMI in co-treated cells by reducing the accumulation of p62 in mitochondria and subsequently limiting their autophagic degradation. This study highlights the unique features of Keap1-Nrf2 PPI inhibitors as inducers of mitophagy and their potential as pharmacological agents for the treatment of pathological conditions characterized by impaired mitochondrial quality control

    Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids

    Get PDF
    An investigation on viscosity was conducted 2 weeks after the Al2O3-water nanofluids having dispersants were prepared at the volume concentration of 1-5%. The shear stress was observed with a non-Newtonian behavior. On further ultrasonic agitation treatment, the nanofluids resumed as a Newtonian fluids. The relative viscosity increases as the volume concentrations increases. At 5% volume concentration, an increment was about 60% in the re-ultrasonication nanofluids in comparison with the base fluid. The microstructure analysis indicates that a higher nanoparticle aggregation had been observed in the nanofluids before re-ultrasonication
    • …
    corecore