152 research outputs found

    3D Morphology of Open Clusters in the Solar Neighborhood with Gaia EDR3: its Relation to Cluster Dynamics

    Get PDF
    We analyze the 3D morphology and kinematics of 13 open clusters (OCs) located within 500 pc of the Sun, using Gaia EDR3 and kinematic data from literature. Members of OCs are identified using the unsupervised machine learning method StarGO, using 5D parameters (X, Y, Z, μαcosδ,μδ\mu_\alpha \cos\delta, \mu_\delta). The OC sample covers an age range of 25Myr--2.65Gyr. We correct the asymmetric distance distribution due to the parallax error using Bayesian inversion. The uncertainty in the corrected distance for a cluster at 500~pc is 3.0--6.3~pc, depending on the intrinsic spatial distribution of its members. We determine the 3D morphology of the OCs in our sample and fit the spatial distribution of stars within the tidal radius in each cluster with an ellipsoid model. The shapes of the OCs are well-described with oblate spheroids (NGC2547, NGC2516, NGC2451A, NGC2451B, NGC2232), prolate spheroids (IC2602, IC4665, NGC2422, Blanco1, Coma Berenices), or triaxial ellipsoids (IC2391, NGC6633, NGC6774). The semi-major axis of the fitted ellipsoid is parallel to the Galactic plane for most clusters. Elongated filament-like substructures are detected in three young clusters (NGC2232, NGC2547, NGC2451B), while tidal-tail-like substructures (tidal tails) are found in older clusters (NGC2516, NGC6633, NGC6774, Blanco1, Coma Berenices). Most clusters may be super-virial and expanding. NN-body models of rapid gas expulsion with an SFE of 1/3\approx 1/3 are consistent with clusters more massive than 250M250\rm M_\odot, while clusters less massive than 250M\rm M_\odot tend to agree with adiabatic gas expulsion models. Only six OCs (NGC2422, NGC6633, and NGC6774, NGC2232, Blanco1, Coma Berenices) show clear signs of mass segregation.Comment: 35 pages, 17 figures, accepted by Ap

    Binary Star Evolution in Different Environments: Filamentary, Fractal, Halo and Tidal-tail Clusters

    Full text link
    Using membership of 85 open clusters from previous studies (Pang et al. 2021a,b, 2022b; Li et al. 2021) based on Gaia DR3 data, we identify binary candidates in the color-magnitude diagram, for systems with mass ratio q > 0.4. The binary fraction is corrected for incompleteness at different distances due to the Gaia angular resolution limit. We find a decreasing binary fraction with increasing cluster age, with substantial scatter. For clusters with a total mass > 200MM_\odot, the binary fraction is independent of cluster mass. The binary fraction depends strongly on stellar density. Among four types of cluster environments, the lowest-density filamentary and fractal stellar groups have the highest mean binary fraction: 23.6% and 23.2%, respectively. The mean binary fraction in tidal-tail clusters is 20.8%, and is lowest in the densest halo-type clusters: 14.8%. We find clear evidence of early disruptions of binary stars in the cluster sample. The radial binary fraction depends strongly on the cluster-centric distance across all four types of environments, with the smallest binary fraction within the half-mass radius rhr_h, and increasing towards a few rhr_h. Only hints of mass segregation is found in the target clusters. The observed amount of mass segregation is not significant to generate a global effect inside the target clusters. We evaluate the bias of unresolved binary systems (assuming a primary mass of 1MM_\odot) in 1D tangential velocity, which is 0.1-1kms1\,\rm km\,s^{-1}. Further studies are required to characterize the internal star cluster kinematics using Gaia proper motions

    3D Morphology of Open Clusters in the Solar Neighborhood with Gaia EDR 3. II. Hierarchical Star Formation Revealed by Spatial and Kinematic Substructures

    Get PDF
    We identify members of 65 open clusters in the solar neighborhood using the machine-learning algorithm StarGO based on Gaia EDR3 data. After adding members of 20 clusters from previous studies we obtain 85 clusters, and study their morphology and kinematics. We classify the substructures outside the tidal radius into four categories: filamentary (f1) and fractal (f2) for clusters 100 Myr. The kinematical substructures of f1-type clusters are elongated; these resemble the disrupted cluster Group X. Kinematic tails are distinct in t-type clusters, especially Pleiades. We identify 29 hierarchical groups in four young regions (Alessi 20, IC 348, LP 2373, LP 2442); 10 among these are new. The hierarchical groups form filament networks. Two regions (Alessi 20, LP 2373) exhibit global orthogonal expansion (stellar motion perpendicular to the filament), which might cause complete dispersal. Infalling-like flows (stellar motion along the filament) are found in UBC 31 and related hierarchical groups in the IC 348 region. Stellar groups in the LP 2442 region (LP 2442 gp 1–5) are spatially well mixed but kinematically coherent. A merging process might be ongoing in the LP 2442 subgroups. For younger systems (≲30 Myr), the mean axis ratio, cluster mass, and half-mass–radius tend to increase with age values. These correlations between structural parameters may imply two dynamical processes occurring in the hierarchical formation scenario in young stellar groups: (1) filament dissolution and (2) subgroup mergers

    The Altered Reconfiguration Pattern of Brain Modular Architecture Regulates Cognitive Function in Cerebral Small Vessel Disease

    Get PDF
    Background: Cerebral small vessel disease (SVD) is a common cause of cognitive dysfunction. However, little is known whether the altered reconfiguration pattern of brain modular architecture regulates cognitive dysfunction in SVD.Methods: We recruited 25 cases of SVD without cognitive impairment (SVD-NCI) and 24 cases of SVD with mild cognitive impairment (SVD-MCI). According to the Framingham Stroke Risk Profile, healthy controls (HC) were divided into 17 subjects (HC-low risk) and 19 subjects (HC-high risk). All individuals underwent resting-state functional magnetic resonance imaging and cognitive assessments. Graph-theoretical analysis was used to explore alterations in the modular organization of functional brain networks. Multiple regression and mediation analyses were performed to investigate the relationship between MRI markers, network metrics and cognitive performance.Results: We identified four modules corresponding to the default mode network (DMN), executive control network (ECN), sensorimotor network and visual network. With increasing vascular risk factors, the inter- and intranetwork compensation of the ECN and a relatively reserved DMN itself were observed in individuals at high risk for SVD. With declining cognitive ability, SVD-MCI showed a disrupted ECN intranetwork and increased DMN connection. Furthermore, the intermodule connectivity of the right inferior frontal gyrus of the ECN mediated the relationship between periventricular white matter hyperintensities and visuospatial processing in SVD-MCI.Conclusions: The reconfiguration pattern of the modular architecture within/between the DMN and ECN advances our understanding of the neural underpinning in response to vascular risk and SVD burden. These observations may provide novel insight into the underlying neural mechanism of SVD-related cognitive impairment and may serve as a potential non-invasive biomarker to predict and monitor disease progression

    Serum Fetuin-A Associates with Type 2 Diabetes and Insulin Resistance in Chinese Adults

    Get PDF
    Previous studies have demonstrated that fetuin-A is related to insulin resistance among subjects with normal glucose tolerance but not patients with type 2 diabetes. There are limited data available concerning fetuin-A and insulin resistance in Chinese. We aimed to study the association of fetuin-A with insulin resistance among participants with or without type 2 diabetes in a large sample size of adults aged 40 and older.A community-based cross-sectional study was performed among 5,227 Chinese adults. The average age of our study was 61.5±9.9 years. Serum fetuin-A concentrations were not significantly different between male and female (296.9 vs. 292.9 mg/l, p = 0.11). Compared with the lowest quartile, the highest quartile of serum fetuin-A revealed a significant higher proportion of type 2 diabetic patients (34.8% vs. 27.3%, p<0.0001). In the multinomial logit models, the risk of type 2 diabetes was associated with each one quartile increase of serum fetuin-A concentrations when referenced not only to normal glucose tolerance (OR 1.24, 95% CI 1.07-1.43, p = 0.004) but also to impaired glucose regulation (OR 1.25, 95% CI 1.08-1.44, p = 0.003, respectively), after adjustment for age, sex, community, current smoking, and current drinking. The logistic regression analysis showed that fetuin-A were associated with elevated HOMA-IR and fasting serum insulin both among the participants with or without type 2 diabetes in the full adjusted analysis. There was no significant association between elevated serum fetuin-A concentrations and impaired glucose regulation (all p≥0.12).Higher fetuin-A concentrations were associated with type 2 diabetes and insulin resistance in middle aged and elderly Chinese

    Active screen plasma surface co-alloying of 316 austenitic stainless steel with both nitrogen and niobium for the application of bipolar plates in proton exchange membrane fuel cells

    Get PDF
    AbstractAustenitic stainless steel has been researched as a promising candidate material for bipolar plates in proton exchange membrane fuel cells. However, its interfacial contact resistance (ICR) is about 16 times higher that of the Department of Energy (DOE) target (10 mΩ cm2), which leads to undesirable fuel cell performance. In this work, a new hybrid plasma surface engineering process, based on active screen plasma co-alloying, has been developed to simultaneously alloy 316 austenitic stainless steel (316 SS) surfaces with both nitrogen and niobium. The results demonstrated that the layer structure of the modified surfaces can be tailored by adjusting the treatment conditions. All the plasma treated 316 SS samples exhibited significantly reduced ICR below the DOE target of 10 mΩ cm2. The corrosion resistance of the N/Nb co-alloyed 316 SS was much better than active screen plasma nitrided and marginally better than the untreated material
    corecore