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Austenitic stainless steel has been researched as a promising candidate material for

bipolar plates in proton exchange membrane fuel cells. However, its interfacial

contact resistance (ICR) is about 16 times higher that of the Department of Energy (DOE)

target (10 mU cm2), which leads to undesirable fuel cell performance. In this work, a new

hybrid plasma surface engineering process, based on active screen plasma co-alloying,

has been developed to simultaneously alloy 316 austenitic stainless steel (316 SS)

surfaces with both nitrogen and niobium. The results demonstrated that the layer

structure of the modified surfaces can be tailored by adjusting the treatment conditions.

All the plasma treated 316 SS samples exhibited significantly reduced ICR below the DOE

target of 10 mU cm2. The corrosion resistance of the N/Nb co-alloyed 316 SS was much

better than active screen plasma nitrided and marginally better than the untreated

material.

Copyright © 2015, The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy

Publications, LLC. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
Introduction

As an efficient, clean and quite power source, proton ex-

changemembrane fuel cells (PEMFCs) have received extensive

interest in the last decade mainly due to the concerns over

severe air pollution caused by conventional power sources

and the depletion of fossil energies. Significant improvement

has been made recently in the efficiency and performance of

PEMFCs. However, the wide commercial application of
in).

d by Elsevier Ltd on behalf of

s/by/4.0/).
PEMFCs has been retarded, to a large extent, by the low me-

chanical strength and the high fabrication cost of graphite

bipolar plates [1].

To this end, great efforts have been made to explore

metallic bipolar plates, such as aluminium alloys [2,3], ti-

tanium alloys [4,5] and amorphous alloys [6,7]. Among

them, austenitic stainless steels (SS) have attracted more

and more attention as promising candidates for bipolar

plate application mainly because of their good mechanical

performance, relatively low cost and ease of manufacture
Hydrogen Energy Publications, LLC. This is an open access article under the
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[8e10]. However, there are still some limitations of austen-

itic stainless steels and hence technical challenges to be

addressed. For example, their insufficient corrosion resis-

tance [11,12] and poor conductivity due to the formation of

passive oxide layer [13,14] can lead to undesired degradation

of the power output of PEMFCs. It is known that surface

modification has been successfully used to improve the

surface properties of materials and components. Hence, it

could be a promising method to improve the surface con-

ductivity and/or corrosion resistance of stainless steel bi-

polar plates [15e18].

In our recent paper, a low-temperature active screen

plasma nitriding (ASPN) technique is reported to modify the

surface properties of 316 SS [19]. The surface conductivity of

316 SS has been successfully improved by the low-

temperature ASPN induced nitrogen-supersaturated S-phase

case. For example, the interfacial contact resistance (ICR) can

be reduced from 158 mU cm2 for the as-received 316 SS to

33 mU cm2 for the ASPN treated surfaces. However, the ICR of

the ASPN treated 316 SS surface is still larger than the target

(10 mU cm2) set by Department of Energy (DOE) [20]. Clearly,

alloying with interstitial nitrogen along cannot meet the DOE

target and new plasma surface co-alloying techniques with

both interstitial and substitutional alloying elements could be

a desirable approach.

Niobium and its compounds are well-known for their

excellent corrosion resistance and surface conductivity.

Many researchers have applied niobium coating onto the

surface of stainless steel bipolar plates to improve their

performance in PEMFC environment. Different methods

have been explored such as cladding [21,22], physical

vapour deposition (PVD) [23,24] and electro-deposition [25]

to improve the corrosion resistance and surface conductiv-

ity of stainless steel. However, the bonding strength be-

tween Nb layer and the substrate is low after annealing

treatment [26]. Electro-deposition of Nb improves the

corrosion resistance of 304 SS but leads to the degradation

of surface conductivity due to the formation of NbO and

Nb2O5.

In view of the problems associated with Nb coatings, Feng

et al. [27] utilizes ion implantation method to introduce Nb

into 316 SS. The corrosion current density of the Nb

implanted 316 SS is reduced effectively but due to the for-

mation of Nb oxide, the surface conductivity of the Nb

implanted stainless steel is still much higher than the DOE

target of 10 mU cm2.

Clearly, new surface engineering technologies need to be

developed to further improve the surface electrical conduc-

tivity of 316 SS. This paper reports a new hybrid plasma sur-

face technology which combines low-temperature active

screen plasma co-alloying with both nitrogen and niobium

with deposition of a thin surface niobium layer on the top. The

microstructure and composition of the plasma treated sur-

faces were fully studied by X-ray diffraction (XRD), energy

dispersive spectroscopy (EDS), X-ray photoelectron spectros-

copy (XPS) and scanning electron microscopy (SEM). The sur-

face conductivity and corrosion behaviour were also

evaluated. Experimental results have demonstrated that the

ICR of the plasma co-alloyed 316 SS surfaces is well below the

DOE target (10 mU cm2).
Materials and methods

Materials and sample preparation: Commercial 316 austenitic

stainless steel (316 SS) was selected as the substrate, and its

chemical composition is (wt%): 0.06% C, 17.20% Cr, 1.30% Mn,

2.20% Mo, 11.70% Ni, 0.014% S and Fe balanced. Coupon

samples of 6 mm in thickness were cut off from 1 inch

(25.4 mm) hot rolled bars using a SiC cutting wheel. The front

side of the coupon samples was firstly wet ground using sili-

con carbide abrasive paper up to #1200 grit and subsequently

polished using 6 mm and 1 mm diamond pastes. The backside

was wet ground up to #1200 grit. Prior to treatment, samples

were washed with soapy water, cleaned with acetone in ul-

trasonic bath for 5min, and finally dried under hot flowing air.

Cross sections were cut from treated coupon samples and

mounted in conductive bakelite. The mounted samples were

wet ground and then polished using the same procedures as

described above. In order to reveal the micro-structure of the

cross sections, an etching agent containing 25 ml H2O, 25 ml

HNO3 and 50 ml HCl was used. After etching for about 20 s,

samples were rinsed immediately with water then acetone,

and dried in hot flowing air.

Active screen plasma treatments: Active screen plasma sur-

face co-alloying treatments with both N and Nb

(ASPA(N þ Nb)) were conducted in an AS Plasma Metal 75 kVA

industrial scale furnace and the experimental setting for the

ASPA(N þ Nb) treatment is shown in Fig. 1, schematically.

The small metal active screen was placed on the worktable

of the large furnace, where bias was applied. The lid of the

active screen was specially designed to carry niobium. The

sample was insulated by ceramic and hence stayed at a

floating potential. The effect of bias on the small metal active

screen was studied using three different biases: 5%, 10% and

15% of the main power supply of 15 kVA, and the treatment

parameters as well as the sample codes are listed in Table 1.

Characterization methods: The phase constituent of the

plasma treated samples was investigated using XRD (Bruker

D8 Advance) with Cu Ka radiation (l ¼ 0.154 nm). The surface

morphology and the cross-sectional microstructure of the

samples before and after treatment were observed using SEM

(Jeol 7000). The chemical compositions of the treated surfaces

and cross-sections were examined by EDS (Oxford Instrument

Inca). The composition and chemical state of the elements

were analysed by XPS (Theta Probe). Elemental concentration

depth profiles were determined by glow discharge optical

emission spectroscopy (GDOES) (Leco GDS-750). The hardness

depth profileswere probed using nano-indentation (Nano Test

600).

Corrosion tests: The corrosion behaviour of untreated and

plasma treated 316 SS samples under different conditions was

evaluated by electrochemical tests consisting of potentiody-

namic polarization and potentiostatic polarization. A stan-

dard three electrodes system was employed in the

polarization tests. A platinum rod, a saturated calomel elec-

trode (SCE) and the to-be-measured sample were acted as the

counter electrode, the reference electrode and the working

electrode, respectively. The Gamry electrochemical worksta-

tion was used to measure and record the corrosion data. To

simulate the working environment of PEMFC, a sulphuric acid
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Fig. 1 e Schematic diagram of experimental setting.
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aqueous solution (0.5MH2SO4þ 2 ppmHF)was selected as the

corrosion solution. Prior to the potentiodynamic polarization,

an open circle potential (OCP) test was conducted for 1 h to

stabilize the sample in the corrosion solution. The potentio-

dynamic polarization scan started from�0.6 V (vs SCE) to 1.2 V

(vs SCE) at a sweep rate of 1 mV/s. For the potentiostatic po-

larization, constant potentials of 0.6 V (vs SCE) and �0.1 V (vs

SCE) were applied to the sample for 4 h, to simulate the

cathode and anode environment, respectively.

Interfacial contact resistance: The interfacial contact resis-

tance was measured using Wang's method [28]. In brief, the

to-be-measured sample was sandwiched between two pieces

of carbon paper (Tory 120), and further sandwiched between

two copper plates under a compaction force of 140 N/cm2. A

constant current was applied onto this assembly cell through

the copper plates. By measuring the voltage drop of this cell,

the total resistance can be calculated. Amicro-ohmmeter (TTi

BS407) was used to apply the current and present the resis-

tance directly. To eliminate the influence of the back side of
Table 1 e Plasma treatment parameters and sample codes.

Sample Temperature (�C) Duration (h) Gas

5% Bs 450 10 25%N2 þ
10% Bs

15% Bs
the sample, gold-coating was applied on it, so the resistance

could be neglected.
Results

Surface morphology of ASPA(N þ Nb) samples

The surfacemorphology and composition of the active-screen

plasmaN/Nb co-alloyed i.e. ASPA(NþNb) treated samples as a

function of the applied bias (Bs) are shown in Fig. 2. It can be

seen that the surface morphology was similar for the 5%Bs

sample (Fig. 2(a)) and 10%Bs sample (Fig. 2(b)), which consisted

of particles with a similar size of about 100 nm. However,

when increased the applied bias to 15% (Fig. 2(c)), the size of

surface particles became unevenwith very small particles and

relatively larger clusters but the density of the surface layer

was improved with reduced number of pinholes. The EDS

surface composition of the three ASPA(N þ Nb) treated sam-

ples is compared in Fig. 2(d). It can be seen that the content

of the alloyed Nb increased markedly with the increase of

the bias used; in contrast, the content of Cr, Ni and Fe

decreased with the increase of the bias used. The light

element N was measured using XPS and the results are re-

ported in Section 3.2.2.

Phase constitute of the ASPA(N þ Nb) treated surfaces

XRD
The XRD patterns of ASPA(N þ Nb) treated samples under

different applied biases are plotted in Fig. 3. It can be seen

from the XRD profile of the 5%Bs sample that an additional set

of peaks can be observed apart from the peaks of the

austenitic stainless steel substrate. Comparing with the peaks

of the substrate, those additional peaks moved to a lower

angle and were broaden to some extent. These are charac-

teristic features of the S-phase formed in low-temperature

plasma nitrided austenitic stainless steel [29]. However,

comparing with the XRD data in the literature [19], the angle

shifting of the 5%Bs sample is relatively smaller, which will be

discussed in Section 4.2. No peaks of niobium nitride could be

found from the XRD pattern of the 5%Bs sample. For the

samples treated by 10% and 15% bias, apart from the peaks of

the substrate, the peaks of Nb4N5 can also be detected. The

dominated orientation of Nb4N5 changed from (211) for the

10%Bs sample to (310) for the 15%Bs sample. No peaks of S-

phase can be found from the XRD patterns of the 10%Bs and

15%Bs samples.

XPS
The chemical states of Nb, N and Fe in ASPA(N þ Nb) treated

surfaces were analysed by XPS and the spectrums were
Pressure (mbar) Applied bias (% of 15 kVA)

75%H2 0.75 5

10

15
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Fig. 2 e Surface morphology of the ASPA(N þ Nb) treated samples at different biases: (a) 5% Bs, (b) 10% Bs and (c) 15% Bs

together with (d) the EDS surface composition.
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obtained after argon ions sputtering for 60s, 180s, 360s and

540s. The XPS spectrums of N 1s and Nb 3d for 5%Bs sample

are shown in Fig. 4(a) and (b). It can be seen from these XPS

spectrums that the binding energy of N 1s and Nb 3d did not
Fig. 3 e XRD profiles of ASPA(N þ Nb) samples.
change significantly with the sputtering time (or depth). The

binding energy of N 1s was determined to be 397 eV, which

was lower than that of the standard binding energy of N 1s

(398.4 eV). The binding energy of Nb 3d was identified as

203.4 eV and 206.3 eV, which were higher than the corre-

sponding standard binding energy of metallic niobium

(202.3 eV and 205 eV). The obtained values of the binding en-

ergy of Nb 3d and N 1s were in good agreement with the re-

sults reported by other researchers [30] and the deviation from

the standard binding energy implied the formation of niobium

nitride. Other conclusions can also be drawn from Fig. 4(a) and

(b) are that the intensity of the Nb 3d and N 1s spectrums

decreased with the increase of the sputtering time, and the

peak of Nb 3d totally vanished but N 1s still remained after

sputtering for 540s. Taking the relatively low sputtering rate of

XPS into account, the niobium nitride layer formed on the 5%

Bs samplemust be very thin. Such a thin niobiumnitride layer

was difficult to be detected by XRD, resulting in the absence of

niobium nitride peaks in the XRD pattern of the 5%Bs sample

(Fig. 3).

The N and Nb spectrums of 10%Bs and 15%Bs samples are

shown in Fig. 4(c) and (d) and (e) and (f), respectively. It can be

http://dx.doi.org/10.1016/j.ijhydene.2015.06.010
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Fig. 4 e The N1s and Nb3d XPS spectrums of ASPA(N þ Nb) samples: (a)&(b) 5%Bs, (c)&(d) 10%Bs, (e)&(f) 15%Bs and (g) the

quantitative XPS results at 360s sputtered surfaces.
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seen that the N and Nb spectrums obtained from the 10%Bs

sample were the same as those from the 15%Bs sample.

Except for the spectrums of 60s-sputtered surface, other

spectrums of 180s, 360s and 540s sputtered surfaces exhibited

almost identical profiles. The binding energy of N 1s and Nb 3d

identified from the surfaces of the 10%Bs and the 15%Bs

samples was the same as that determined from the 5%Bs

sample. Therefore, the XPS results of the 10%Bs and the 15%Bs

samples also indicated the formation of a niobium nitride

layer on the surface of these two samples and the niobium

nitride layers were thicker than that formed on the surface of

the 5%Bs sample as these spectrums were independent of the

sputtering time up to 540s.

The spectrums obtained after argon irons sputtering for

360s were quantitatively analysed and the results are sum-

marized in Fig. 4(g). It can be cleanly seen that the atomic

percentage of N and Nb increased with the increase of the

applied bias. The identification of Nb4N5 peaks from the XRD

patterns (Fig. 3) was in agreement with the quantification

analysis of the XPS spectrums. The atomic ratio of N/Nb for

the 15%Bs sample was around 1.23, which was close to that of

the Nb4N5 (1.25).

Apart from niobium and nitrogen, iron was also detected

by XPS. The binding energy of iron was determined to be

706.7 eV and the peak position did not change after different

sputtering durations (Fig. 5). It follows that iron existed in pure

metal state in the modified surfaces, and the intensity of the

Fe 2p peaks reduced gradually with the increase of applied

bias. The content of Fe quantified from the XPS spectrums of

360s sputtered surfaces decreased with the increase of the

applied bias from 30.5 at% for the 5% Bs samples to 17.0 at% for

the 10% Bs samples and 8.2 at% for the 15% Bs samples. A very

low amount of chromium and nickel was found by XPS as well

and identified in pure metal state. Most probably, they were

sputtered from the stainless steel cage and then deposited on

the plasma treated surfaces.

Layer structure of the ASPA(N þ Nb) treated samples

The low and high magnification cross-sectional images of

ASPA(N þ Nb) treated samples are shown in Fig. 6. The sam-

ples observed under lowmagnification were etched, while the

samples observed under high magnification were not etched

to optimally reveal the microstructural features.

For the sample treated with 5% bias (i.e. 5%Bs), a feature-

less layer was found on the top of the surface in the low
Fig. 5 e The Fe 2p XPS spectrums of ASPA(N þ
magnification SEM image (Fig. 6(a)). The GDOES nitrogen

depth profile as inlet in Fig. 6(a) indicated the high nitrogen

content in this featureless layer. The maximum nitrogen

content was found to be around 15 at% in this featureless

layer, whichwasmuch higher than that of themaximumsolid

solubility of N in austenitic stainless steel (8.7 at%), reported in

literatures [31,32]. Referring to the typical features observed in

the previous research [19] and taking the XRD results (Fig. 3)

into account, this layer can be identified as the nitrogen super-

saturated expanded austenite, i.e. the so-call S-phase [29].

Under high magnification, a dark thin layer was observed on

the top of the S-phase case formed on 5%Bs sample (Fig. 6(b)).

The EDS element line-scan indicated that this thin dark layer

was rich in niobium.

For 10%Bs and 15%Bs samples, a white dense layer can be

found on the top of the severely eroded substrate and no S-

phase case can be found from those two samples (Fig. 6(c) and

(e)). In addition, a groove can be observed between the white

layer and the substrate. From the high magnification back-

scattered electron (BSE) images of the 10% Bs and 15% Bs

samples (Fig. 6(d) and (f)), it can be seen that the top layer was

dense and columnar structured, whichwas in agreementwith

the surface morphology observed under SEM (Fig. 2). The EDS

line-scan also proved that the surface layer contained a high

level of niobium. Taking the results of SEM, XPS and XRD into

account, the niobium rich layer on the surface could be

deduced as the Nb4N5 layer. The formation of the groove

observed after etching (Fig. 6(c) and (e)) wasmost probably due

to the huge difference in corrosion resistance between the top

Nb nitride layer and the substrate. The thickness of the

niobium nitride layer and the S-phase case is compared in

Fig. 6(g) as a function of the bias used. It can be seen that the

thickness of the niobium nitride layer increased with the in-

crease of the applied bias.

Corrosion behaviour

The potentiodynamic polarization curves of ASPA(N þ Nb)

treated samples are drawn in Fig. 7(a). It can be seen clearly

that the ASPA(N þ Nb) treated samples exhibited more posi-

tive corrosion potential than that of the untreated and typical

ASPN treated samples. The passive current density of the

ASPA(N þ Nb) treated samples was higher than that of the

untreated sample but lower than that of the typical ASPN

treated sample. It is also noted that in general the passive

current density reduced with the increase of the applied bias.
Nb) samples (a) 5%Bs (b) 10%Bs (c) 15%Bs.
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Fig. 6 e Cross-sectional images of ASPA(N þ Nb) samples: Low magnification image of (a) 5%Bs, (c) 10%Bs, (e) 15%Bs. High

magnification image of (b) 5%Bs, (d) 10%Bs, (f) 15%Bs, (g) the thickness of S-phase and deposition layer of ASPA(N þ Nb)

samples.
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Fig. 7 e (a) Potentiodynamic polarization curves of ASPA(N þ Nb) samples, and potentiostatic polarization results of the

untreated sample and the 15%Bs sample under (b) ¡0.1 V and (c) 0.6 V.

Table 2 e Corrosion potential and corrosion current
density of samples.

Sample Ecorr vs SCE (mV) Icorr (mA/cm
2)

Untreated �450 10.3

5%Bs �412 9.0

10%Bs �362 20.8

15%Bs �170 3.2

ASPN 450-10h-5% �476 74.8

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 0 ( 2 0 1 5 ) 1 0 2 8 1e1 0 2 9 210288
In particular, the 15%Bs sample showed the lowest passive

current density among plasma treated samples, almost one

order of magnitude lower than that of the ASPN treated

sample.

The corrosion potential (Ecorr) and corrosion current den-

sity (Icorr) of all the samples were quantitatively calculated

from the potentiodynamic polarization curves and the results

are summarized in Table 2. It can be seen that the Ecorr of the

ASPA(N þ Nb) treated sample increased with the applied bias

and was much higher than that of the untreated and the

ASPN treated sample. For the corrosion current density, the

10%Bs sample showed a higher Icorr than that of both the 5%

Bs and the 15%Bs samples. Two possible reasons might have

caused the relatively high corrosion current density of the

10%Bs sample. Firstly, compared with the 15%Bs sample, the

niobium nitride layer formed on the 10%Bs sample was too

porous (Fig. 2(b)) and too thin (Fig. 6(d)) to protect against the

aggressive corrosion solution. Secondly, compared with the

5%Bs sample, no corrosion resistant S-phase case formed in

the 10%Bs sample. Hence, severe corrosion would occur

when the corrosion solution was penetrated through the

pinholes in the niobium nitride layer and reached the sub-

strate. It is obvious from Table 2 that the 15%Bs sample

exhibited the best corrosion resistance in terms of the high-

est corrosion potential and the lowest corrosion current

density.

Due to the best potentiodynamic performance, the 15%Bs

sample was selected for further potentiostatic polarization

tests. The potentiostatic polarization results of the un-

treated sample and the 15%Bs sample under the applied
potential of �0.1 V and 0.6 V are plotted in Fig. 7(b) and (c),

respectively. When �0.1 V (vs SCE) was applied (Fig. 7(b)),

the current density of the 15%Bs sample gradually increased

during the entire test; however, the current density of the

untreated sample increased in the first 2000s and then

decreased in the rest of the test. Accordingly, the current

density of the 15%Bs sample was lower than that of the

untreated sample within the first 8500s, and then became

larger in the rest of the test. When 0.6 V (vs SCE) was applied

(Fig. 7(c)), the 15%Bs sample stabilized more quickly than

the untreated sample. However, after stabilization the cur-

rent density of the 15%Bs sample (2.21 � 10�6A/cm2) was

slightly higher than that of the untreated sample

(1.63 � 10�6A/cm2). It is worth to notice that after 11,000s,

the current density of the untreated sample fluctuated

strongly, which indicated the failure of passive protect film.

In contrast, the current density of the 15%Bs sample was

stable in the entire test, which indicated the better long-

term stability of the niobium nitride layer.
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Surface electrical conductivity

The results of ICR measurements under the compaction force

of 140 N/cm2 are shown in Fig. 8. In echo of the results re-

ported before [19], ASPN treatment can significantly decrease

the ICR value of 316 SS. Compared with the ASPN treated

sample, the ICR value of 316 SS was further reduced to below

the DOE target (10 mU cm2) by simultaneously introducing N

and Nb (i.e. ASPA(N þ Nb)).
Discussion

The optimal parameters of ASPA(N þ Nb) treatment for the
application of PEMFC bipolar plates

Two of the most important properties required for high-

efficient and long-life bipolar plates are their corrosion resis-

tance and surface electrical conductivity.

It can be seen from Table 2 that the corrosion potential

increased with the bias applied and the 15%Bs sample

exhibited the highest corrosion potential among all the

ASPA(N þ Nb) treated samples. Indeed, the corrosion po-

tential of the 15%Bs sample was even higher than that of

the untreated material. The results of interfacial contact

resistance (ICR) measurement revealed that the ICR values

of all the ASPA(N þ Nb) samples were around 9 mU cm2 and

their difference was within the range of the experimental

error.

Therefore, it follows that the 15%Bs sample exhibited the

best combination of corrosion resistance and surface con-

ductivity among all three ASPA(N þ Nb) samples and hence

the optimal parameters of the ASPA(NþNb) treatment for the

application of PEMFC bipolar plates are at 450 �C for 10 hwith a

bias of 15%.

However, due to the S-phase formed in the 5%Bs sample

(Fig. 6(a)), it is expected that the 5%Bs sample should have a

higher load bearing capacity than the 15%Bs sample con-

taining no S-phase case (Fig. 6(f)). Therefore, the 5% bias could

be the best treatment if the forming of the PEMFC bipolar

plates, such as stamping, needs to be carried out after the

surface treatment.
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Fig. 8 e The ICR values (under 140 N/cm2) of ASPA(N þ Nb)

treated samples as well as untreated and ASPN treated

samples for comparison.
Comparison between the ASPN sample and the
ASPA(N þ Nb) sample

The experimental results reported have clearly demonstrated

that the new hybrid plasma surface engineering process

developed based on active-screen plasma co-alloying with

both interstitial element of nitrogen and substitutional

element of niobium was superior to typical active-screen

plasma alloying with nitrogen or active screen plasma

nitriding (ASPN) treatment in terms of significantly improved

corrosion behaviour and effectively reduced ICR to below

10 mU cm2. Therefore, it is scientifically interesting and

technologically important to understand the mechanism

involved.

To this end, by way of example the ASPN and the

ASPA(N þ Nb) samples treated under the same processing

conditions (at 450 �C for 10 h under 0.75 mbar at 5% bias) are

compared in Fig. 9. It can be clearly seen that the thickness of

the S-phase case (Fig. 9(a)) formed on the ASPN treated sample

(10.8 mm) was much thicker than that formed on the

ASPA(N þ Nb) treated sample (6.3 mm). Not only is the S-phase

thickness different for those two samples, but the nitrogen

depth profiles (Fig. 9(b)) also show a great difference. As shown

in Fig. 9(b), the nitrogen depth profile across the ASPN treated

sample was well above that of the ASPA(N þ Nb) sample and

the former penetratedmuch deeper than the latter. This could

explain the smaller angle shifting of the S-phase peaks in the

XRD profile of the 5%Bs ASPA(NþNb) sample (Fig. 3) than that

of the ASPN treated sample.

The comparison of nano-hardness depth profiles of the

ASPN treated sample and the ASPA(N þNb) treated sample is

showed in Fig. 9(c). The hardness of the S-phase case formed

in the ASPN treated sample was about 14 GPa and the high

hardness region extended to a depth around 10 mm. In

contrast, the hardness of S-phase formed in the

ASPA(N þ Nb) treated sample reduced continuously from

around 10 GPa at the surface to the substrate value at about

6 mm below the surface. The observed hardness depth dis-

tribution in the ASPN and ASPA(N þ Nb) treated samples

corresponded well with the nitrogen depth distribution,

shown in Fig. 9(b).

Clearly, more nitrogen was introduced into the ASPN

treated sample than into the ASPA(N þ Nb) treated sample

when treated under the same temperature, time, pressure and

bias conditions. The major difference in nitrogen mass

transfer should be attributed to the Nb introduced during the

ASPA(N þ Nb) treatments in which a Nb-containing active-

screen lid was used. It is known that niobium has a high af-

finity with nitrogen as it is a strong nitride former [33].

Therefore it is reasonable to assume that most of the nitrogen

atoms would react with niobium to form niobium nitride

during the ASPA(N þ Nb) treatments and hence only a small

amount of nitrogen atoms could diffuse into the substrate to

form S-phase due to the trapping effect of niobium. Accord-

ingly, the thickness of the S-phase case formed in the

ASPA(NþNb) treated sample was only half that formed in the

ASPN sample and the nitrogen content of the former was

much lower than that of the latter. This is supported by sur-

face layer structure observed for 10%Bs and 15%Bs samples.

http://dx.doi.org/10.1016/j.ijhydene.2015.06.010
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As shown in Fig. 6(d) and (f), further increase in the bias led to

the formation of a relatively thick niobium nitride layer on the

top of the 10%Bs and 15%Bs samples without measurable S-

phase case beneath (Fig. 6(g)). This is because, when increased

the bias, Nb was more rapidly sputtered off from the Nb-

containing active-screen lid and reacted with nitrogen

atoms to form niobium nitride, which deposited onto the

sample surface to become a niobium nitride barrier layer for

nitrogen diffusion into the subsurface. The formation of

Nb4N5 layer was implied by the XRD results shown in Fig. 3

and evidenced by the quantitative XPS results (Fig. 4(g)) that

the Nb/N ratio (0.87 and 0.81 for 10%Bs and 15%Bs samples

respectively) was close to the theoretical value of Nb4N5 phase

(0.80).

In contrast, although the XPS results shown in Fig. 4(a)

and (b) confirmed the formation of niobium nitride during

the 5%Bs treatment, it is most probably that no continues

niobium nitride film was formed on the top of the 5%Bs

sample. This is supported by the XPS quantitative composi-

tion results (Fig. 4(g)) because the ratio of Nb/N in the 5%Bs

surface (0.54) was much lower than the theoretical Nb/N in

the XRD detected Nb4N5 phase (0.80). Therefore, nitrogen

could still diffuse, despite of trapping by niobium, inward to

form a sublayer of S-phase beneath the top Nb-rich layer.
Fig. 9 e (a) the S-phase thickness, (b) atomic percentage of nitro

ASPN and ASPA(N þ Nb) samples treated at 450 �C for 10 h wit
Thus it follows from the discussion above that the new

hybrid plasma process developed could produce an in-site

formed duplex surface structure consisting of a Nb-rich

surface layer followed by a nitrogen supersaturated S-

phase case if a low bias of 5% is applied.

The significant improvement in the surface electrical

conductivity of 316 SS by the new ASPA(N þ Nb) treatments

could be contributed to the change of the nature of surface

layers. As discussed in introduction, the formation of a

passive oxide layer leads to the ‘stainlessness’ of 316 SS;

however it also dramatically increases the electrical resis-

tance from 77 mU cm for 316 SS [34] to around 108 mU cm for

the surface chromium oxide (Cr2O3) passivation film [35]. In

contrast, the surface of the ASPA(N þ Nb) treated samples

was covered by a niobium nitride layer. The electrical

resistance [36] of the surface niobium nitride layer

(57 mU cm) is 7 orders of magnitude lower than that of the

surface chromium oxide (Cr2O3) passivation film. As a

result, the ICR value has been significantly reduced from 316

SS (158 mU cm2) to ASPA(N þ Nb) treated samples

(9 mU cm2). From the comparison of ICR in Fig. 8, the ICR

value of the ASPA(N þ Nb) treated samples was also much

lower than that of the typical ASPN treated samples. This is

mainly because chromium oxide can still form on the
gen profiles against depth and (c) nano-hardness profiles of

h 5% bias.
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surface of S-phase formed in austenite stainless steel by the

ASPN treatments [37].

Apart from the effectively improved surface electrical

conductivity, the corrosion resistance of the ASPA(N þ Nb)

treated samples was also superior to that of the typical ASPN

treated samples in terms of reduced corrosion current density

and increased corrosion potential. This could be attributed to

the formation of surface niobium nitride layer by the

ASPA(N þ Nb) treatment in view of the superior corrosion

resistance of the niobium nitride [38]. As reported in our pre-

vious paper [19], the surface of the ASPN treated 316 SS is

covered by a layer of iron nitrides [39], which exhibits

poor corrosion behaviour than niobium nitride. The slightly

higher passive current density of the ASPA(N þ Nb) treated

316 SS relative to that of the untreated material could be

related to the corrosion of iron embedded in the niobium

nitride layer (Fig. 5).
Conclusions

A new hybrid plasma surface co-alloying process has been

successfully developed to simultaneously alloy 316 austenitic

stainless steel (316 SS) surfaces with both nitrogen and

niobium. By adjusting the treatment condition, the layer

structure of the modified surfaces can be tailored. When

treated under a low applied bias of 5%, a duplex surface layer

structure consisting of a very thin niobium nitride surface

layer followed by an S-phase case can be produced; however,

when treated under high applied bias (10e15%), only a

niobium nitride layer can be formed on the surface without

the formation of S-phase case underneath.

The electrochemical corrosion resistance and the interfa-

cial contact resistance (ICR) of the ASPA(N þ Nb) treated sur-

faces have been evaluated and compared with untreated and

typical active screen plasma nitrided (ASPN) surfaces. The

electrochemical corrosion tests have revealed that the corro-

sion potential of 316 SS can be increased by all three

ASPA(N þ Nb) treatments but the passive current density of

the treated sampleswas higher than that of the untreated one;

the ASPA(N þ Nb) treated samples were superior to the ASPN

treated ones in terms of increased corrosion potential and

reduced passive current density. Among the three

ASPA(N þ Nb) treated samples, the 15%Bs sample exhibited

the best corrosion resistance.

The results of interfacial contact resistance tests show

that the ICR values of all three ASPA(N þ Nb) treated sam-

ples were about 9 mU cm2. This is about 18 and 3.6 times

lower than that of the untreated and ASPN treated 316 SS,

respectively, which is also lower than the DOE target

(10 mU cm2).

Taking the corrosion properties and interfacial contact

resistant into account, the ASPA(NþNb) treatment at 15% bias

(15%Bs) is the best treatment potentially for the application of

PEMFC bipolar plates.

Further tests, such as single cell tests and long-duration

corrosion tests, are needed to evaluate the performance of

the ASPA(N þ Nb) treated 316 stainless steel bipolar plates in

the real PEMFC working environment.
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