87 research outputs found

    Waste to treasure: Regeneration of porous Co-based catalysts from spent LiCoO2 cathode materials for efficient oxygen evolution reaction

    Get PDF
    The increasing demand for portable electronic devices and electric vehicles (EV) has triggered the rapid growth of rechargeable Li-ion batteries (LIBs) markets. However, in the near future, it is predicated a large amount of spent LIBs will be scrapped, imposing huge pressure on environmental protection and resources reclaiming. The effective recycling or regeneration of the spent LIBs not only relieves the environmental burdens but also avoids the waste of valuable metal resources. Herein, a porous Co9S8/Co3O4 heterostructure is successfully synthesized from the spent LiCoO2 (LCO) cathode materials via a conventional hydrometallurgy and sulfidation process. The fabricated Co9S8/Co3O4 catalyst proves high catalytic activity towards oxygen evolution reaction (OER) in alkaline solution, with an overpotential of 274 mV to achieve the current density of 10 mA cm-2 and a Tafel slope of 48.7 mV dec-1. This work demonstrates a facile regeneration process of Co-based electrocatalysts from the spent LiCoO2 cathode materials for efficient oxygen evolution reaction

    Radiomics-Based Outcome Prediction for Pancreatic Cancer Following Stereotactic Body Radiotherapy

    Get PDF
    (1) Background: Radiomics use high-throughput mining of medical imaging data to extract unique information and predict tumor behavior. Currently available clinical prediction models poorly predict treatment outcomes in pancreatic adenocarcinoma. Therefore, we used radiomic features of primary pancreatic tumors to develop outcome prediction models and compared them to traditional clinical models. (2) Methods: We extracted and analyzed radiomic data from pre-radiation contrast-enhanced CTs of 74 pancreatic cancer patients undergoing stereotactic body radiotherapy. A panel of over 800 radiomic features was screened to create overall survival and local-regional recurrence prediction models, which were compared to clinical prediction models and models combining radiomic and clinical information. (3) Results: A 6-feature radiomic signature was identified that achieved better overall survival prediction performance than the clinical model (mean concordance index: 0.66 vs. 0.54 on resampled cross-validation test sets), and the combined model improved the performance slightly further to 0.68. Similarly, a 7-feature radiomic signature better predicted recurrence than the clinical model (mean AUC of 0.78 vs. 0.66). (4) Conclusion: Overall survival and recurrence can be better predicted with models based on radiomic features than with those based on clinical features for pancreatic cancer

    The Potential Use of Radiomics with Pre-Radiation Therapy MR Imaging in Predicting Risk of Pseudoprogression in Glioblastoma Patients

    Get PDF
    Glioblastoma (GBM) is the most common adult glioma. Differentiating post-treatment effects such as pseudoprogression from true progression is paramount for treatment. Radiomics has been shown to predict overall survival and MGMT (methylguanine-DNA methyltransferase) pro- moter status in those with GBM. A potential application of radiomics is predicting pseudoprogression on pre-radiotherapy (RT) scans for patients with GBM. A retrospective review was performed with radiomic data analyzed using pre-RT MRI scans. Pseudoprogression was defined as post-treatment findings on imaging that resolved with steroids or spontaneously on subsequent imaging. Of the 72 patients identified for the study, 35 were able to be assessed for pseudoprogression, and 8 (22.9%) had pseudoprogression. A total of 841 radiomic features were examined along with clinical features. Receiver operating characteristic (ROC) analyses were performed to determine the AUC (area under ROC curve) of models of clinical features, radiomic features, and combining clinical and radiomic features. Two radiomic features were identified to be the optimal model combination. The ROC analysis found that the predictive ability of this combination was higher than using clini- cal features alone (mean AUC: 0.82 vs. 0.62). Additionally, combining the radiomic features with clinical factors did not improve predictive ability. Our results indicate that radiomics is potentially capable of predicting future development of pseudoprogression in patients with GBM using pre- RT MRIs

    Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications

    Get PDF
    As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization

    Radiomics-Based Outcome Prediction for Pancreatic Cancer Following Stereotactic Body Radiotherapy

    Get PDF
    (1) Background: Radiomics use high-throughput mining of medical imaging data to extract unique information and predict tumor behavior. Currently available clinical prediction models poorly predict treatment outcomes in pancreatic adenocarcinoma. Therefore, we used radiomic features of primary pancreatic tumors to develop outcome prediction models and compared them to traditional clinical models. (2) Methods: We extracted and analyzed radiomic data from pre-radiation contrast-enhanced CTs of 74 pancreatic cancer patients undergoing stereotactic body radiotherapy. A panel of over 800 radiomic features was screened to create overall survival and local-regional recurrence prediction models, which were compared to clinical prediction models and models combining radiomic and clinical information. (3) Results: A 6-feature radiomic signature was identified that achieved better overall survival prediction performance than the clinical model (mean concordance index: 0.66 vs. 0.54 on resampled cross-validation test sets), and the combined model improved the performance slightly further to 0.68. Similarly, a 7-feature radiomic signature better predicted recurrence than the clinical model (mean AUC of 0.78 vs. 0.66). (4) Conclusion: Overall survival and recurrence can be better predicted with models based on radiomic features than with those based on clinical features for pancreatic cancer

    Target dose conversion modeling from pencil beam (PB) to Monte Carlo (MC) for lung SBRT

    Get PDF
    Background: A challenge preventing routine clinical implementation of Monte Carlo (MC)-based lung SBRT is the difficulty of reinterpreting historical outcome data calculated with inaccurate dose algorithms, because the target dose was found to decrease to varying degrees when recalculated with MC. The large variability was previously found to be affected by factors such as tumour size, location, and lung density, usually through sub-group comparisons. We hereby conducted a pilot study to systematically and quantitatively analyze these patient factors and explore accurate target dose conversion models, so that large-scale historical outcome data can be correlated with more accurate MC dose without recalculation. Methods: Twenty-one patients that underwent SBRT for early-stage lung cancer were replanned with 6MV 360° dynamic conformal arcs using pencil-beam (PB) and recalculated with MC. The percent D95 difference (PB-MC) was calculated for the PTV and GTV. Using single linear regression, this difference was correlated with the following quantitative patient indices: maximum tumour diameter (MaxD); PTV and GTV volumes; minimum distance from tumour to soft tissue (dmin); and mean density and standard deviation of the PTV, GTV, PTV margin, lung, and 2 mm, 15 mm, 50 mm shells outside the PTV. Multiple linear regression and artificial neural network (ANN) were employed to model multiple factors and improve dose conversion accuracy. Results: Single linear regression with PTV D95 deficiency identified the strongest correlation on mean-density (location) indices, weaker on lung density, and the weakest on size indices, with the following R2 values in decreasing orders: shell2mm (0.71), PTV (0.68), PTV margin (0.65), shell15mm (0.62), shell50mm (0.49), lung (0.40), dmin (0.22), GTV (0.19), MaxD (0.17), PTV volume (0.15), and GTV volume (0.08). A multiple linear regression model yielded the significance factor of 3.0E-7 using two independent features: mean density of shell2mm (P = 1.6E-7) and PTV volume (P = 0.006). A 4-feature ANN model slightly improved the modeling accuracy. Conclusion: Quantifiable density features were proposed, replacing simple central/peripheral location designation, which showed strong correlations with PB-to-MC target dose conversion magnitude, followed by lung density and target size. Density in the immediate outer and inner areas of the PTV showed the strongest correlations. A multiple linear regression model with one such feature and PTV volume established a high significance factor, improving dose conversion accuracy

    Target dose conversion modeling from pencil beam (PB) to Monte Carlo (MC) for lung SBRT

    Get PDF
    Background: A challenge preventing routine clinical implementation of Monte Carlo (MC)-based lung SBRT is the difficulty of reinterpreting historical outcome data calculated with inaccurate dose algorithms, because the target dose was found to decrease to varying degrees when recalculated with MC. The large variability was previously found to be affected by factors such as tumour size, location, and lung density, usually through sub-group comparisons. We hereby conducted a pilot study to systematically and quantitatively analyze these patient factors and explore accurate target dose conversion models, so that large-scale historical outcome data can be correlated with more accurate MC dose without recalculation. Methods: Twenty-one patients that underwent SBRT for early-stage lung cancer were replanned with 6MV 360° dynamic conformal arcs using pencil-beam (PB) and recalculated with MC. The percent D95 difference (PB-MC) was calculated for the PTV and GTV. Using single linear regression, this difference was correlated with the following quantitative patient indices: maximum tumour diameter (MaxD); PTV and GTV volumes; minimum distance from tumour to soft tissue (dmin); and mean density and standard deviation of the PTV, GTV, PTV margin, lung, and 2 mm, 15 mm, 50 mm shells outside the PTV. Multiple linear regression and artificial neural network (ANN) were employed to model multiple factors and improve dose conversion accuracy. Results: Single linear regression with PTV D95 deficiency identified the strongest correlation on mean-density (location) indices, weaker on lung density, and the weakest on size indices, with the following R2 values in decreasing orders: shell2mm (0.71), PTV (0.68), PTV margin (0.65), shell15mm (0.62), shell50mm (0.49), lung (0.40), dmin (0.22), GTV (0.19), MaxD (0.17), PTV volume (0.15), and GTV volume (0.08). A multiple linear regression model yielded the significance factor of 3.0E-7 using two independent features: mean density of shell2mm (P = 1.6E-7) and PTV volume (P = 0.006). A 4-feature ANN model slightly improved the modeling accuracy. Conclusion: Quantifiable density features were proposed, replacing simple central/peripheral location designation, which showed strong correlations with PB-to-MC target dose conversion magnitude, followed by lung density and target size. Density in the immediate outer and inner areas of the PTV showed the strongest correlations. A multiple linear regression model with one such feature and PTV volume established a high significance factor, improving dose conversion accuracy

    Associations between Statin/Omega3 Usage and MRI-Based Radiomics Signatures in Prostate Cancer

    Get PDF
    Prostate cancer is the most common noncutaneous cancer and the second leading cause of cancer deaths among American men. Statins and omega-3 are two medications recently found to correlate with prostate cancer risk and aggressiveness, but the observed associations are complex and controversial. We therefore explore the novel application of radiomics in studying statin and omega-3 usage in prostate cancer patients. On MRIs of 91 prostate cancer patients, two regions of interest (ROIs), the whole prostate and the peripheral region of the prostate, were manually segmented. From each ROI, 944 radiomic features were extracted after field bias correction and normalization. Heatmaps were generated to study the radiomic feature patterns against statin or omega-3 usage. Radiomics models were trained on selected features and evaluated with 500-round threefold cross-validation for each drug/ROI combination. On the 1500 validation datasets, the radiomics model achieved average AUCs of 0.70, 0.74, 0.78, and 0.72 for omega-3/prostate, omega- 3/peripheral, statin/prostate, and statin/peripheral, respectively. As the first study to analyze radiomics in relation to statin and omega-3 uses in prostate cancer patients, our study preliminarily established the existence of imaging-identifiable tissue-level changes in the prostate and illustrated the potential usefulness of radiomics for further exploring these medications’ effects and mechanisms in prostate cancer

    Stimulation of Apolipoprotein A-IV expression in Caco-2/TC7 enterocytes and reduction of triglyceride formation in 3T3-L1 adipocytes by potential anti-obesity Chinese herbal medicines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chinese medicine has been proposed as a novel strategy for the prevention of metabolic disorders such as obesity. The present study tested 17 Chinese medicinal herbs were tested for their potential anti-obesity effects.</p> <p>Methods</p> <p>The herbs were evaluated in terms of their abilities to stimulate the transcription of Apolipoprotein A-IV (ApoA-IV) in cultured Caco-2/TC7 enterocytes. The herbs that showed stimulating effects on ApoA-IV transcription were further evaluated in terms of their abilities to reduce the formation of triglyceride in differentiated 3T3-L1 adipocytes.</p> <p>Results</p> <p>ApoA-IV transcription was stimulated by <it>Rhizoma Alismatis </it>and <it>Radix Angelica Sinensis </it>in a dose- and time-dependent manner in cultured Caco-2/TC7 cells. Moreover, these two herbs reduced the amount of triglyceride in differentiated 3T3-L1 adipocytes.</p> <p>Conclusion</p> <p>The results suggest that <it>Rhizoma Alistmatis </it>and <it>Radix Angelica Sinensis </it>may have potential anti-obesity effects as they stimulate ApoA-IV transcription and reduce triglyceride formation.</p
    corecore