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Abstract: Glioblastoma (GBM) is the most common adult glioma. Differentiating post-treatment ef-
fects such as pseudoprogression from true progression is paramount for treatment. Radiomics has 
been shown to predict overall survival and MGMT (methylguanine-DNA methyltransferase) pro-
moter status in those with GBM. A potential application of radiomics is predicting pseudoprogres-
sion on pre-radiotherapy (RT) scans for patients with GBM. A retrospective review was performed 
with radiomic data analyzed using pre-RT MRI scans. Pseudoprogression was defined as post-treat-
ment findings on imaging that resolved with steroids or spontaneously on subsequent imaging. Of 
the 72 patients identified for the study, 35 were able to be assessed for pseudoprogression, and 8 
(22.9%) had pseudoprogression. A total of 841 radiomic features were examined along with clinical 
features. Receiver operating characteristic (ROC) analyses were performed to determine the AUC 
(area under ROC curve) of models of clinical features, radiomic features, and combining clinical 
and radiomic features. Two radiomic features were identified to be the optimal model combination. 
The ROC analysis found that the predictive ability of this combination was higher than using clini-
cal features alone (mean AUC: 0.82 vs. 0.62). Additionally, combining the radiomic features with 
clinical factors did not improve predictive ability. Our results indicate that radiomics is potentially 
capable of predicting future development of pseudoprogression in patients with GBM using pre-
RT MRIs.  

Keywords: radiomics; glioblastoma; GBM; pseudoprogression; radiation 
 

1. Introduction 
Imaging is a primary diagnostic tool upon which medical decisions are made, and 

magnetic resonance imaging (MRI) is commonly used to monitor post-treatment effects 
for central nervous system (CNS) tumors. There is more information within images than 
is initially seen, however. Radiomics is the transformation of images to mineable data [1]. 
The process of radiomics involves image acquisition, segmentation, and labeling of the 
tumor/normal tissues, extraction of quantitative features (shape, intensity, texture), fol-
lowed by statistical modeling and machine learning [2]. Radiomics is of interest in oncol-
ogy, as it has the potential to provide important diagnostic and prognostic information. 

Citation: Baine, M.; Burr, J.; Du, Q.; 

Zhang, C.; Liang, X.; Krajewski, L.; 

Zima, L.; Rux, G.; Zhang, C.; Zheng, 

D. The Potential Use of Radiomics 

with Pre-Radiation Therapy MR  

Imaging in Predicting Risk of  

Pseudoprogression in Glioblastoma 

Patients. J. Imaging 2021, 7, 17. 

https://doi.org/ 

10.3390/jimaging7020017 

Academic Editors: Renato Cuocolo, 

Lorenzo Ugga, Valeria Romeo 

Received: 23 December 2020 

Accepted: 25 January 2021 

Published: 28 January 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



J. Imaging 2021, 7, 17 2 of 13 
 

 

Cellular and molecular changes impacting imaging characteristics may allow for the gath-
ering of complex tumor information through less invasive methods. Furthermore, these 
features are readily available as patients have many images taken throughout the course 
of their treatment. 

One category of tumor that could benefit from the clinical applications of radiomics 
is gliomas. Gliomas are the most common primary CNS malignancy in adults and are 
separated into grades I-IV according to the World Health Organization (WHO) [3]. Glio-
blastoma (GBM), WHO Grade IV, are the most lethal and most common gliomas in adults, 
with more than 10,000 cases diagnosed per year in the United States [4]. GBMs grow rap-
idly and are extremely invasive. Treatment for GBM typically involves maximal safe re-
section with adjuvant chemoradiation (CRT). Even with aggressive treatment of radical 
surgical resection and adjuvant CRT, the median survival is only 15–20 months [5,6]. 
Known prognostic factors for patients with GBM include patient age, performance status, 
tumor grade and histology, MGMT promoter methylation IDH-1 mutation, and the extent 
of resection [3,7]. As the disease progression varies among patients and can be rapid, close 
monitoring, especially with medical imaging, is important. 

Following completion of treatment, imaging with brain MRIs is scheduled per NCCN 
guidelines. Pseudoprogression is a transient radiologic finding frequently encountered in 
the post-radiotherapy (RT) setting that often imitates true progression, with or without 
clinical effects [8]. Varying in incidence from 12%–50%, pseudoprogression is associated 
with an increased overall survival in GBM patients, but differentiating this entity from 
true progression presents a difficult task for oncologists seeking to give effective treatment 
[9–11]. 

Developing pseudoprogression is partially due to inherent features of tumors. For 
example, pseudoprogression is more commonly seen in patients with MGMT promoter 
methylation and IDH-1 mutations [10–13]. Tumors with MGMT promoter methylation 
exhibit pseudoprogression in up to 91% of cases versus 41% of cases in those unmethyl-
ated [12]. Similarly, pseudoprogression was seen in 54.1% of patients with IDH-1 muta-
tions [11]. However, pseudoprogression occurs in patients without these molecular fea-
tures, highlighting the need for additional tools to predict pseudoprogression or distin-
guish pseudoprogression from true progression. 

Most efforts attempting to distinguish pseudoprogression from true progression on 
follow-up imaging utilize known parameters, including tumor size, edema changes from 
T1- and T2-weighted sequences, and diffusion and perfusion indices. Collectively, these 
parameters have proven insufficient to reliably discriminate pseudoprogression from true 
progression [14]. Thus, radiomic methods have been explored to address these challenges. 
As a first step in the investigation of using complex imaging information, Jang et al. uti-
lized raw MRI images and deep learning methods for predicting pseudoprogression vs. 
true progression with moderate predictability achieved, with a mean AUC (area under 
ROC (receiver operating characteristic) curve) at 0.72 in the training set. While novel in 
the field, the results indicate the necessity of further studies [15]. To our knowledge, no 
study has utilized radiomics for predicting pseudoprogression using pre-RT scans, which 
may provide information on intrinsic tissue factors of patients prone to develop pseudo-
progression. 

The clinical potential of radiomics has not been reached, and the amount of clinically 
relevant data in the field is sparse [16]. Our goal is to assess the clinical utility of radiomics 
for patients with GBM by extracting radiomic features predictive of pseudoprogression. 
Our hypothesis is that radiomic features extracted from pre-RT imaging will be able to 
suggest pseudoprogression. 
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2. Materials and Methods 
2.1. Patient Information and Clinical Data 

This study was approved by the institutional review board (Protocole#398-17-EP, ap-
proved 26 June 2017). Our database included patients with pathologically proven glio-
blastoma between 2009 and 2018. Patients with GBM who had pre-RT MRIs were in-
cluded. Of the 72 patients fitting these parameters, 35 reached final analysis due to others 
not having pseudoprogression data. Data were gathered via a retrospective chart review 
in a single department at a Midwest medical school, and they included demographics, 
pathologic characteristics, treatment, recurrence history, and pre-RT MRI images. Clinical 
features included age, gender, location of tumor, and extent of resection. These features 
were selected independent of and in combination with radiomic features to evaluate their 
utility in predicting pseudoprogression. Radiomic data were extracted exclusively from 
pre-RT imaging and analyzed to determine pseudoprogression prediction. Pseudopro-
gression was determined by reviewing post-RT imaging and clinical notes. Pseudopro-
gression was defined as post-treatment findings on imaging that either resolved sponta-
neously or with steroids on subsequent imaging. 

2.2. Imaging, Segmentation, and Feature Extraction 
2.2.1. Imaging 

Pre-RT T1 MRI images with gadolinium-based contrast agents were taken before ra-
diation therapy. These contrast-enhanced T1 MRI images were used for radiomic analysis. 
The radiomic features analyzed were from pre-RT scans only. Pre-treatment imaging was 
chosen for this analysis due to the concept that development of pseudoprogression is 
likely multi-factorial but partially due to tumor features such as the amount/nature of new 
vasculature, growth rate, association with tumor stroma, and the genetic profiles of the 
malignancies. The ability to extract and analyze these differences through a radiomic anal-
ysis may be compromised by post-treatment effects in the tumor. Sequential images (usu-
ally every 3 months) were acquired following RT. These post-radiation MRI images were 
used to assess pseudoprogression. Only patients with regular follow-up and sufficient 
numbers of post-radiation MRIs for pseudoprogression assessment were included in the 
final analysis. Pseudoprogression was diagnosed from a consensus of the CNS oncology 
treatment team, which includes certified neuroradiologists, radiation oncologists, neuro-
surgeons, and medical oncologists. All MRI images were acquired on a 1.5 T Ingenia MRI 
scanner by Philips Medical Systems. Slice thickness ranged from 1 to 2.5 mm, with most 
using 1 mm slices.  

2.2.2. Segmentation 
Regions of interest, manually drawn by one of two attending radiation oncologists 

according to the tumor boundary on the contrast-enhanced T1-weighted pre-RT MRIs, 
were used for analysis. Segmentation based on contrast-enhanced T1 imaging without use 
of T2 flair imaging was chosen for multiple reasons: (1) consistency in segmentation across 
patients and amongst the radiation oncologists providing the segmentation; (2) pseudo-
progression often occurs in the treated regions receiving full radiation dose, which is a 
volume based on the contrast-enhanced T1 imaging regardless of which guidelines the 
respective radiation oncologist used for treatment planning; and (3) the flair portion of an 
MRI in the setting of glioblastoma is of unclear etiology, potentially representing tumor 
infiltration, benign edema, or recent seizure activity. Our intention was to analyze radio-
mic features based on characteristics of the tumors, focusing on the area of greatest likeli-
hood to be attributable to the malignancy (contrast-enhancing region). To avoid bias field 
distortions and data heterogeneity bias, a bias field correction using N4 and an image 
normalization using histogram matching was performed using the 3D Slicer software on 
the MRI images before feature extraction. 
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2.2.3. Radiomic Feature Extraction 
From each segmented tumor, 841 radiomic features were extracted from the seg-

mented 3D volume using the radiomics module on 3D Slicer 4.9 [17] and visualized using 
an interactive visualization platform [18]. A resampled 3 × 3 × 3 mm3 voxel size and a bin 
width of 25 were used for feature extraction. The features are defined in compliance with 
feature definitions as described by the Imaging Biomarker Standardization Initiative 
(IBSI) [19] and can be divided into original features (105 features) and wavelet features 
(736 features). The original features can be sub-divided into 7 classes, including 13 shape 
features, 18 first order statistical features, 23 gray level co-occurrence matrix (GLCM) fea-
tures, 14 gray level dependence matrix (GLDM) features, 16 gray level run length matrix 
(GLRLM) features, 16 gray level size zone matrix (GLSZM) features, and 5 neighboring 
gray tone difference matrix (NGTDM) features. The wavelet features included all except 
shape features calculated on the filtered images with all 8 combinations of applying either 
a high or a low pass filter in each of the three dimensions. For our experiment, a 16GB 
RAM system with an Intel Core i7-7700 CPU processor @3.60 GHz was used. The feature 
extraction took on average 2–3 min per patient image set. A list of all features are given in 
Supplementary Table S1. 

2.3. Data Analysis 
The data analysis, described with more details in the following sections, was per-

formed by using R (version 3.3.2) [20]. 

2.3.1. Heatmap Analysis of Variables 
To investigate the overall relationship of radiomic features, a heatmap analysis was 

performed. Hierarchical clustering was conducted with the average method based on the 
correlation distance for both radiomic features and patients. Patients were grouped into 
two clusters, and each cluster has a unique pattern. 

2.3.2. Radiomic Feature Selection 
For the radiomic prediction, feature selection was performed with the following 

steps. A univariate ANOVA analysis was performed to select potential features contrib-
uting to the classification. In the ANOVA analysis, patients with pseudoprogression and 
those without were assumed to have equal means for the tested radiomic feature, indicat-
ing that the feature provides little information for differentiating the two groups. A sig-
nificant p-value rejects the assumption, which means the tested feature can provide infor-
mation for the prediction of pseudoprogression. Since hundreds of radiomic features were 
tested independently, false discovery rates (FDRs) were calculated to reduce the impact 
of the multiple testing problem. Those features with FDR-adjusted p-values smaller than 
0.1 were selected. They were then clustered to group highly correlated features (cutoff = 
0.9) into clusters, and only the feature with the lowest FDR adjusted p-value was kept 
within each cluster to reduce collinearity. Lastly, sequential floating forward selection 
(SFFS) was then used to select features, which gave the highest area under the receiver 
operating characteristic (ROC) curve (AUC) value with a random forest machine learning 
model. The PRAUC values were also calculated from the precision-recall ROC curves. 

2.3.3. Radiomic Model Building and Validation 
The prediction model was trained with random forest to optimize the AUC. The per-

formance of the model was evaluated by 1000-time 3-fold cross-validations, yielding 3000 
AUC values from the test datasets. The statistical distributions of these 3000 AUC values 
were used to describe the performance of the model. Due to the uneven patient distribu-
tion between the pseudoprogression and non-pseudoprogression groups (8:27), a strati-
fied 3-fold cross-validation was used, i.e., the ratio of positives to negatives of the data in 
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each group was restricted in order to have the same ratio as in the whole dataset. There-
fore, subsets are representative of all strata of the whole dataset. Three top-ranked radio-
mic features from feature selection were used to generate 1-feature, 2-feature, and 3-fea-
ture radiomic models, yielding a total of 7 different models. The model with the highest 
average AUC value was selected as the final radiomic model. A one-tailed t-test was con-
ducted to compare each of the other models with this model, with a null assumption that 
the other comparing model is better than the selected model.  

2.3.4. Radiomic and Clinical Model Comparison 
The model performance of the following three signatures were evaluated: the radio-

mic signature (with the selected radiomic features as described in 2.3.3), the clinical sig-
nature (with the selected clinical features as described in 2.1), and the combined signature 
(with both the selected radiomic features and clinical features). The clinical features in-
cluded age, gender, location of tumor, and extent of resection. For this comparison, a ROC 
analysis was performed with an additional 1000-round stratified 3-fold cross-validations 
on the above three signatures, from which the AUC, the PRAUC, the true positive rate 
(TPR), and the true negative rate (TNR) of the trained models were calculated on the test 
datasets and compared amongst the three models.  

3. Results 
A total of 72 patients were identified for this study, of whom 35 patients could be 

assessed for pseudoprogression and were thus included in the analysis. The patient, treat-
ment, and tumor characteristics are reported in Table 1. There were 24 patients (68.6%) 
who were males and 11 (31.4%) were females. The mean age was 55.5 with a range of 8– 
87 years old. MGMT promoter and IDH1 statuses of the cohort were largely unknown, as 
seen in Table 1. Almost 75% of MGMT promoter and 50% of IDH1 statuses were un-
known, making the positive or negative identification of pseudoprogression more diffi-
cult. Most GBM patients in our study were treated with 60 Gy in 30 fractions (21/35, 60%), 
with other regimens being less common. Similarly, concurrent temozolomide (TMZ) was 
given to 71.4% (25/35) of patients and 74.3% (26/35) of patients were treated with adjuvant 
TMZ. Pseudoprogression was found in 8 (22.9%) cases. 
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Table 1. Patient demographics of the study population. Clinical features of chemotherapy, radiation dose, location, and 
extent of resection are included as well. MGMT: O6-methyl-guanine methyl transferase; IDH: isocitrate dehydrogenase; 
TMZ: temozolomide; Gy: Gray; Fx: fractions; GTR: gross total resection; NTR: near-total resection; STR; sub-total resection. 

 Total (n = 35) Pseudoprogression (n = 8) No Pseudoprogres-
sion (n = 27) 

Age 55.5 (8–87) 59.3 (26–73) 54.3 (8–87) 
Gender n % n % n % 

Male 24 68.6 7 87.5 17 63.0 
Female 11 31.4 1 12.5 10 37.0 

MGMT Promoter sta-
tus       

Methylated 7 20 2 25 5 18.5 
Non-methylated 3 8.6 1 12.5 2 7.4 

Unknown 25 71.4 5 62.5 20 74.1 
IDH-1 status       
Wild-Type 13 37.1 3 37.5 10 37.0 

Mutant 4 11.4 1 12.5 3 11.1 
Unknown 18 51.4 4 50 14 51.9 

Concurrent TMZ       
Yes 25 71.4 6 75 19 70.4 
No 8 22.9 2 25 6 22.2 

Unknown 2 5.7 0 0 2 7.4 
Adjuvant TMZ       

Yes 26 74.3 5 62.5 21 77.8 
No 6 17.1 2 25 4 14.8 

Unknown 3 8.6 1 12.5 2 7.4 
Radiation Dose/Frac-

tions       

60Gy/30Fx 21 60 5 62.5 16 59.3 
59.4Gy/33Fx 4 11.4 0 0 4 14.8 
54Gy/30Fx 2 5.7 0 0 2 7.4 

55.8Gy/31Fx 1 2.85 1 12.5 0 0 
40.05Gy/15Fx 2 5.7 0 0 2 7.4 
34.6Gy/11Fx 1 2.85 0 0 1 3.7 
34Gy/10Fx 2 5.7 1 12.5 1 3.7 
25Gy/5Fx 1 2.85 1 12.5 0 0 
Unknown 1 2.85 0 0 1 3.7 
Location       

Right frontal lobe 8 22.9 2 25 6 22.2 
Right temporal lobe 6 17.1 0 0 6 22.2 
Right parietal lobe 4 11.4 1 12.5 3 11.1 

Left frontal lobe 0 0 0 0 0 0 
Left temporal lobe 3 8.6 1 12.5 2 7.4 
Left parietal lobe 5 14.2 1 12.5 4 14.8 

Other location 3 8.6 2 25 1 3.7 
Unknown 6 17.1 1 12.5 5 18.5 

Extent of resection       
GTR 12 34.2 1 12.5 11 40.7 
NTR 3 8.6 1 12.5 2 7.4 
STR 11 31.4 2 25 9 33.3 
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Biopsy 7 20 4 50 3 11.1 
None 1 2.85 0 0 1 3.7 

Unknown 1 2.85 0 0 1 3.7 

A heatmap of all the radiomic features and patients is plotted in Figure 1. Using the 
cross-validations, from the 841 radiomic features, three top-ranked features were selected. 
As given in Table 2, the selected features included wavelet_HHL_firstorder_Mean (fea-
ture 1), original_firstorder_Minimum (feature 2), and wavelet_LHL_glszm_Size-
ZoneNonUniformityNormalized (feature 3). Feature 2 is derived from the original image, 
representing the minimum intensity within the volume of interest. Features 1 and 3 are 
derived from wavelet filtered images with high-pass, high-pass, and low-pass filters, and 
low-pass, high-pass, and low-pass filters, along the x, y, z directions, respectively. Feature 
1 represents the average intensity within the volume of interest on the derived image. 
Feature 3 represents the normalized variability of size zone volumes throughout the vol-
ume of interest where a lower value indicates more homogeneity. The AUCs (average and 
standard deviation) from the 1000-time 3-fold cross-validation are also listed in Table 2 
for models using these features (univariate prediction). 

 
Figure 1. Radiomic heat map shows unsupervised clustering of all patients. The patients were clustered into 2 clusters 
based on the similarity of their radiomic feature patterns. The standardized z-scores were used to depict the normalized 
feature value variation for the patients. 
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Table 2. Three radiomics features of 841 selected from each segmented tumor. Univariate AUCs and PRAUCs for the three 
radiomics features are listed. AUC: area under ROC curve; Std. Dv.: standard deviation; PRAUC: area under the precision-
recall ROC curve. 

Radiomic 
Feature ID 

Radiomic Feature Mean AUC Std. Dv. Mean 
PRAUC 

Mean F1 

1 wavelet_HHL_firstorder_Mean 0.66 0.19 0.51 0.52 
2 original_firstorder_Minimum 0.67 0.18 0.47 0.37 

3 wavelet_LHL_glszm_SizeZoneNonUni-
formityNormalized 0.66 0.20 0.53 0.47 

Among the 7 radiomic models (3 single-feature models, 3 two-feature models, and 1 
three-feature model), the single-feature models yielded mean AUCs between 0.6 and 0.7, 
while the two-feature and three-feature models yielded AUCs above 0.7. The two-feature 
model combining features 2 and 3 achieved the highest mean AUC of 0.82. P-values were 
above 0.05 for all t-tests comparing the other 6 models with this model, which leads us to 
reject the hypotheses that any other model is superior to this model. The AUCs, PRAUCs, 
F1 scores from the precision-recall curves, TPRs, and TNRs from the two-feature and 
three-feature models are listed in Table 3. For the selected model with features 2 and 3, a 
cutoff logit value of −0.754 would optimally yield a true positive rate of 0.8 while main-
taining a false positive rate around 0.25. In application, patients with calculated logit val-
ues above the cutoff value are predicted to be prone to developing pseudoprogression 
following radiotherapy. 

Table 3. ROC analysis results for testing the combination of any two or all three top radiomic fea-
tures selected from 3000 (1000 repeats of 3-fold cross-validations) tests. The best-performing model 
based on the mean AUC value was the combination of features 2 and 3. AUC: Area under ROC 
curve; Std. Dv.: standard deviation; PRAUC: area under the precision-recall ROC curve; TPR: true 
positive rate; TNR: true negative rate. 

Radiomic Feature Combination 1,2 1,3 2,3 1,2,3 
Mean AUC 0.80 0.75 0.82 0.81 

Std. Dv. 0.14 0.20 0.15 0.15 
Mean PRAUC 0.60 0.66 0.62 0.63 

Std. Dv. 0.22 0.24 0.26 0.24 
Mean F1 0.50 0.50 0.59 0.57 
Std. Dv. 0.22 0.25 0.29 0.24 

Mean TPR 0.58 0.53 0.64 0.63 
Std. Dv. 0.29 0.29 0.35 0.29 

Mean TNR 0.82 0.84 0.88 0.85 
Std. Dv. 0.14 0.13 0.13 0.13 

The ROC analysis comparing the clinical-based model, the radiomics-based model, 
and the combined model yielded mean AUCs of 0.62, 0.82, and 0.80 from the 1000 rounds 
of stratified 3-fold cross-validations, respectively; this suggests that the radiomic signa-
ture was superior to the clinical signature and is similar to the combined model at predict-
ing the development of pseudoprogression. A comparison of the average ROC curves and 
precision-recall ROC curves of the three models is shown in Figures 2 and 3, respectively. 
As shown in both figures, the radiomics and combined models are comparable while the 
clinical model shows a significant decrease in efficacy. Table 4 also lists the details of the 
AUCs, PRAUCs, F1 scores from the precision-recall curves, TPRs, and TNRs for the com-
parison. 
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Figure 2. The average ROC curves of the selected radiomics model, the clinical model, and the combined model with both 
radiomic and clinical features, generated from the 3000 cross-validation datasets. The mean AUC was 0.62, 0.82, and 0.80 
for the clinical model, the radiomics model, and the combined model, respectively. 

 
Figure 3. The average precision-recall ROC curves of the selected radiomics model, the clinical model, and the combined 
model with both radiomic and clinical features. The mean PRAUC was 0.21, 0.62, and 0.62 for the clinical model, the 
radiomics model, and the combined model, respectively. 
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Table 4. ROC analysis results for comparing the selected radiomics model, the clinical model, and 
the combined model with both radiomic and clinical features on 1000-round stratified 3-fold cross-
validations. AUC: Area under ROC curve; Std. Dv.: standard deviation; PRAUC: area under the 
precision-recall ROC curve; TPR: true positive rate; TNR: true negative rate. 

 Clinical Model Radiomics Model Combined Model 
Mean AUC 0.62 0.82 0.80 

Std. Dv. 0.16 0.15 0.16 
Mean PRAUC 0.21 0.62 0.62 

Std. Dv. 0.11 0.26 0.25 
Mean F1 0.09 0.59 0.49 
Std. Dv. 0.16 0.30 0.29 

Mean TPR 0.09 0.64 0.49 
Std. Dv. 0.16 0.35 0.33 

Mean TNR 0.83 0.88 0.90 
Std. Dv. 0.13 0.13 0.11 

4. Discussion 
In this study, our objective was to identify radiomic features to predict pseudopro-

gression in GBM patients using pre-RT MRI imaging as a pilot feasibility study. A radio-
mic model was constructed using 1000 times 3-fold cross-validations, which achieved a 
mean AUC of 0.82 on the 3000 test datasets with a random forest model using a combina-
tion of two selected features. These two radiomic features were then compared with four 
clinical features and a model including both radiomic and clinical features through ROC 
analyses with an additional 1000-round 3-fold cross-validations. The radiomic model re-
sulted in a mean AUC of 0.82, which was higher than the clinical model (0.62). Combining 
radiomic and clinical features did not improve the model performance, resulting in a 
mean AUC of 0.80. These results demonstrate the potential of radiomics in predicting 
pseudoprogression using pre-RT MRIs. 

These results fit within the context of previously published works using advanced 
imaging analyses, including radiomics and radiogenomics in differentiating pseudopro-
gression from true progression [15,21–23]. Several studies have also aimed to predict over-
all survival, progression free survival, EGFRvIII and IDH1 mutation status, and MGMT 
promoter methylation status using radiomics [24–27]. Li et al. successfully developed a 
multi-parametric signature using preoperative imaging that predicted overall survival in 
patients with GBM more accurately than conventional prognostic factors or a fixed-pa-
rameter radiomics model [24]. The combination of a radiomics model with clinical and 
genetic profiles improved the predictability for overall and progression-free survivals 
[26]. Xi et al. added to the existing body of literature by suggesting that radiomic features 
could predict MGMT methylation status in GBM pre-operatively [25]. Furthermore, Soike 
et al. found that true imaging response was associated with an improved overall and pro-
gression-free survival, and that MGMT methylation correlated with true imaging re-
sponse but not pseudoprogression [27]. 

Our study investigated the ability of radiomics to predict pseudoprogression. Pseu-
doprogression remains an important phenomenon in GBM as its differentiation from true 
treatment failure is imperative for patient management. Pseudoprogression can often be 
managed with observation alone, while true progression requires therapeutic alteration 
or consideration of discontinuation of care [8,28]. A previous study from Jang et al. 
showed promising results, as they studied radiomics in post-chemoradiation therapy 
(post-CRT) MRI scans with moderate predictability [15]. One concern raised from study-
ing post-CRT MRI scans was the potential distortion of intrinsic radiomic features in the 
brain due to treatment effects. Using pre-RT imaging, we found a combination of two 
radiomic features predictive of development of future pseudoprogression. These radio-



J. Imaging 2021, 7, 17 11 of 13 
 

 

mic features showed an increase in the predictive ability when compared to clinical fea-
tures and dominated the performance in the combined model. The two selected features 
are the minimum value within the region-of-interest on the original image and Size-
ZoneNonUniformityNormalized on the derived image after applying a low-pass, a high-
pass, and a low-pass wavelet filter along the x, y, z directions, respectively. Size-
ZoneNonUniformityNormalized is a normalized value that measures the variability of 
size-zone volumes throughout the region of interest, with a lower value indicating more 
homogeneity among zone-size volumes in the image. 

Limitations of our study include the relative unknown nature of molecular sub-types 
within our population, including MGMT and IDH-1 statuses, which have been shown to 
be linked to a higher incidence of pseudoprogression and thus may confound our data 
[11,12]. Due to the incomplete marker status in our retrospective cohort, such factors were 
not included in our study to avoid further reducing the analyzable data size. Future stud-
ies are warranted to analyze such factors and evaluate their associations with the radiomic 
features. In addition, the region of interest segmentation was performed by two physi-
cians, but the inter- and intra-observer variability was not studied. Although it has been 
shown that pseudoprogression may be related to an increased survival time, survival data 
were not collected as this has already been reported in previous studies [29,30]. Further-
more, the retrospective nature, limited number of patients, relative homogeneity of the 
studied population, and inclusion of patients from a single institution may limit the ability 
of this data to be extrapolated to other populations. The post-surgical treatment modalities 
the studied patients received were heterogeneous with RT dosing varying from hypofrac-
tionated palliative doses to a standard conventionally fractionated dose, which also could 
confound the results. The limited sample size of the final analyzable patient population 
and the lack of an independent validation group are major limitations of the current work. 
These limitations may impact the uncertainty and generalizability of our findings. Never-
theless, efforts were made to best address some of these limitations, such as performing 
1000-round 3-fold cross-validations in feature selection to mitigate the limited sample 
size. In addition, only 2 features were used in the final radiomic model in an uncertainty 
attempt to minimize the chance of model overfitting. 

Despite these limitations, results from current studies support the potential clinical 
applications of radiomics to predict pseudoprogression. As patients are followed closely 
with imaging, the value in differentiating changes on these scans with reliable predicta-
bility would be immense. 

Future directions of this work include larger scaled studies with a validating data-
base to confirm these results. In addition, expanding radiomic analyses to post-RT scans, 
and combining pre-RT and post-RT radiomic features, such that intrinsic tissue factors 
and post-treatment changes can be incorporated into predictive algorithms to identify 
pseudoprogression, could prove worthwhile. Furthermore, studies involving molecular 
marker status to control for these variables would be valuable as well. 

5. Conclusions 
Glioblastoma is the most common glioma in adults, and pseudoprogression is a well-

defined post-treatment effect frequently encountered. Using radiomic data from pre-radi-
ation therapy MRI images, an optimal signature of two radiomic features out-performed 
clinical features alone in predicting the development of future pseudoprogression. Addi-
tionally, when combining radiomic features with clinical features, performance did not 
improve. Further large-scale studies are needed to validate our findings, but the results 
indicate the potential of radiomic features to predict future development of pseudopro-
gression in GBM patients using pre-radiation therapy MRIs.  

Supplementary Materials: The following are available online at www.mdpi.com/2313-
433X/7/2/17/s1, Table S1: Radiomic features analyzed in study. 
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