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RESEARCH Open Access

Target dose conversion modeling from
pencil beam (PB) to Monte Carlo (MC) for
lung SBRT
Dandan Zheng1, Xiaofeng Zhu1, Qinghui Zhang2, Xiaoying Liang3, Weining Zhen1, Chi Lin1, Vivek Verma1,
Shuo Wang1, Andrew Wahl1, Yu Lei1, Sumin Zhou1 and Chi Zhang4*

Abstract

Background: A challenge preventing routine clinical implementation of Monte Carlo (MC)-based lung SBRT is the
difficulty of reinterpreting historical outcome data calculated with inaccurate dose algorithms, because the target
dose was found to decrease to varying degrees when recalculated with MC. The large variability was previously
found to be affected by factors such as tumour size, location, and lung density, usually through sub-group
comparisons. We hereby conducted a pilot study to systematically and quantitatively analyze these patient factors
and explore accurate target dose conversion models, so that large-scale historical outcome data can be correlated
with more accurate MC dose without recalculation.

Methods: Twenty-one patients that underwent SBRT for early-stage lung cancer were replanned with 6MV 360°
dynamic conformal arcs using pencil-beam (PB) and recalculated with MC. The percent D95 difference (PB-MC) was
calculated for the PTV and GTV. Using single linear regression, this difference was correlated with the following
quantitative patient indices: maximum tumour diameter (MaxD); PTV and GTV volumes; minimum distance from
tumour to soft tissue (dmin); and mean density and standard deviation of the PTV, GTV, PTV margin, lung, and
2 mm, 15 mm, 50 mm shells outside the PTV. Multiple linear regression and artificial neural network (ANN) were
employed to model multiple factors and improve dose conversion accuracy.

Results: Single linear regression with PTV D95 deficiency identified the strongest correlation on mean-density
(location) indices, weaker on lung density, and the weakest on size indices, with the following R2 values in
decreasing orders: shell2mm (0.71), PTV (0.68), PTV margin (0.65), shell15mm (0.62), shell50mm (0.49), lung (0.40),
dmin (0.22), GTV (0.19), MaxD (0.17), PTV volume (0.15), and GTV volume (0.08). A multiple linear regression model
yielded the significance factor of 3.0E-7 using two independent features: mean density of shell2mm (P = 1.6E-7) and
PTV volume (P = 0.006). A 4-feature ANN model slightly improved the modeling accuracy.

Conclusion: Quantifiable density features were proposed, replacing simple central/peripheral location designation,
which showed strong correlations with PB-to-MC target dose conversion magnitude, followed by lung density and
target size. Density in the immediate outer and inner areas of the PTV showed the strongest correlations. A multiple
linear regression model with one such feature and PTV volume established a high significance factor, improving
dose conversion accuracy.

Keywords: Lung SBRT, Monte Carlo, Prescription, Target dose variation
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Background
Accuracy of dose calculations has long been recognized
as a critical issue for stereotactic body radiotherapy
(SBRT) of the lung, where the heterogeneous tumour-
lung interface and the large fractional dose necessitate
advanced dose algorithms [1–8]. With the advent of fast
Monte Carlo (MC) algorithms in major treatment plan-
ning systems during the past decade, many studies have
been conducted on dose comparisons between MC and
other algorithms for lung SBRT [9–32]. From these stud-
ies, it has been shown that the major dose discrepancy be-
tween different algorithms exists on the treatment target
rather than normal tissues. On the other hand, very large
variations in target doses have been calculated for individ-
ual cases, making a simple correction on the prescription
dose using historical and inaccurate algorithms difficult.
For example, a study by van der Voort van Zyp et al.
showed patient-to-patient variations of 3 to 33 % in the re-
duction of the planning target volume (PTV) D95 by the
MC compared with the original equivalent path length
(EPL) calculation [17]. Similar large variations have been
well described by many other reports [16, 19, 22, 24, 28],
even as large as ranging from 2.9 to 82.7 % in a study by
Liu et al. [18]. These studies all concluded that, from one
type of algorithm to another, it is impossible to simply
convert treatment protocols owing to the large observed
variations.
Some studies have also found that a number of patient

and treatment characteristics contribute to these varia-
tions, such as tumour size, tumour location, lung dens-
ity, beam energy, prescription isodose line, and delivery
technique [14, 16, 17, 19, 28, 30, 31]. Van der Voort van
Zyp et al. [17] investigated the effects of various factors,
and recommended different prescription doses based on
tumour location and size. In the study, dose differences
were compared between EPL and MC on 53 patients,
and the authors demonstrated using multivariate regres-
sion analysis that the minimum distance to soft tissue
and the GTV size were associated with the magnitude of
dose reduction. Therefore, they recommended different
MC prescription doses based on tumour location and
size using the median reductions of their subgroups: a
lower prescription (i.e. a larger dose reduction) for a per-
ipheral than for a central tumour; or for a small than a
large tumour.
In another study, Wu et al. [28] also investigated the

effect of tumour location and size by grouping a series
of 33 patients into central and peripheral location groups,
with further subgrouping into large and small sizes within
the location groups. In addition to comparing the reduc-
tion from EPL to MC on target dose coverage indices such
as PTV D95 and D98, the authors also compared four
point doses at the PTV periphery. Interestingly, for central
vs. peripheral tumours, statistically significant differences

did not exist for two of the four point doses, nor the PTV
D95 or D98. Between the small and large tumour sizes,
only a few dose-volume indices showed statistically signifi-
cant differences within the peripheral tumour group, and
none of the indices did so within the central tumour
group. Using phantom studies, a few groups have reported
the association of lung densities with the algorithm-
related magnitude of dose differences in the target
[16, 30]. However, such an association has heretofore not
been demonstrated by studies on patients. Therefore, al-
though it is generally accepted that a larger target dose re-
duction is associated with small and peripheral tumours
amidst lower lung density, a clear and statistically signifi-
cant trend has been challenging to demonstrate in patient
studies.
The association of these patient characteristics with

the magnitude of target dose reduction indeed makes
intuitive sense. The dose difference comes from calcula-
tion errors by the less accurate (so-called Type-A) algo-
rithms, such as EPL or pencil beam (PB), owing to the
combination of the low-density medium and small fields
causing charge particle disequilibrium near the tumour-
lung interface that is not well-modeled by these algo-
rithms. A peripheral location where the tumour is often
surrounded by lung tissues, as compared with a central
location in which the tumour is close to the mediasti-
num (soft tissues), would therefore pose a bigger model-
ing challenge for these algorithms, leading to a larger
error. Similarly, a lower surrounding lung density would
lead to larger heterogeneity and make modeling more
difficult; additionally, a smaller tumour size would lead
to a smaller field size and hence a larger error. However,
within a population of patients, this complex network of
factors co-exist together with other plan-related parame-
ters, sometimes offsetting each other and masking the
effects, which makes the identification of any trend chal-
lenging without sufficient statistical power. In addition,
the classification of central vs. peripheral is anatomical,
in which targets are considered peripheral if they reside
greater than two centimeters from mediastinal, pulmon-
ary, and vertebral structures; all other targets are con-
sidered central. This designation may not be a directly
suitable factor for classifying dose modeling challenges.
For example, the modeling error might be smaller for a
peripheral tumour immediately next to the chest wall
than for a central tumour within 2 cm of a bronchial
tree.
Quantification of tumour location could potentially

provide more clear and detailed information than the
simple “central vs. peripheral” classification. Therefore,
in this work we quantitatively analyzed various patient-
related factors that potentially impact the magnitude
of target dose errors. For the analysis, all factors were
made “quantifiable”, including “tumour location”. Because
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grouping and sub-grouping a study cohort based on differ-
ent features greatly reduces the sample size (and therefore
statistical power), we used linear regression to continu-
ously analyze each feature’s individual effect in the whole
study population. Different features’ interplay was compre-
hensively investigated by applying multiple linear regres-
sion and artificial neural network. Using a pilot cohort of
21 lung SBRT patients, we tested the above methodologies
in an attempt to build a more accurate and robust model
for target dose conversion from Type-A to MC algorithms.

Methods
Patient simulation and treatment planning
With the approval of the University of Nebraska Medical
Center Institutional Review Board, 21 patients with non-
small cell lung cancer (NSCLC) treated with lung SBRT at
our institution between 2011 and 2012 were randomly se-
lected. Patient characteristics are summarized in Table 1.
The patients were previously treated on a Novalis™ LINAC
with an M3 multi-leaf collimator (MLC) (Brainlab AG,
Feldkirchen, Germany). For the current study, the patients
were replanned for a TrueBeamSTx LINAC with an HD
MLC (Varian Medical Systems, Palo Alto, CA, USA), on
which both PB and MC algorithms were commissioned in
iPlan Version 4.5 (Brainlab AG, Feldkirchen, Germany).
Each patient was simulated in a BlueBAG™ immobili-

zation system (Medical Intelligence, Schwabmünchen,
Germany) with a free-breathing 3D CT followed by a 4D
CT on a Sensation Open CT scanner (Siemens, Erlangen,
Germany) with an Anzai belt system (Anzai Medical Sys-
tems, Tokyo, Japan) as the respiratory surrogate. On iPlan,
the 3D CT and 4D CT images were fused using the com-
mon frame of reference or rigidly to the spine. The gross
tumour volume (GTV) was contoured as the gross disease
on the 3D CT, and the internal target volume (ITV) was
contoured using the 3D CT, the maximum intensity pro-
jection (MIP) from the 4D CT, and each phase of the 4D
CT, as the union of the gross disease seen on these images.
A 6 mm uniform expansion from the ITV then generated
the PTV.
Dynamic conformal sub-arcs of 6 MV photons were

employed for the treatment, combining into a 360°
co-planar total arc, ignoring possible patient-machine
clearance issues for large patients with very peripherally

situated lesions. The 360° total arc was employed for the
current study to remove gross angular dose dependence
associated with a partial arc, although small angular effects
might still exist due to adjustable relative weighting on the
sub-arcs for plan optimisation purposes. The MLC aper-
tures of the arcs dynamically conformed to the PTV at
every 10° (but delivered continuously) with a 2 mm initial
margin. The MLCs were manually adjusted and forwardly-
optimised during planning to provide desirable dose
coverage and conformality. RTOG relative dose-volume
constraints for the target, organs-at-risk (OARs) and nor-
mal tissue were followed [2, 3].
The prescription was 48 Gy in 4 consecutive fractions,

planned with the PB algorithm using iPlan 4.5. The
plans were normalized so that 95 % of the PTV was cov-
ered by the prescription dose, and the prescription dose
was around 90 % of the maximum dose for all cases.
The plans were then re-calculated using the iPlan 4.5
MC algorithm [15]. The full MLC geometry simulation
“Accuracy Optimised Model”, with a spatial resolution
of 2 mm and variance of 1 %, was used.

Dosimetric comparison and difference quantification
Both dose-volume histograms (DVHs) and isodose dis-
tributions were reviewed to compare the PB and MC
calculations for each plan. For the quantitative analysis,
D95 (the minimum dose received by 95 % of the vol-
ume) of the PTV and the GTV were obtained. Because
the dose coverage of the targets were always overesti-
mated by the PB algorithm as compared with the MC
algorithm, the MC vs. PB percent D95 deficiency was
calculated for the PTV and the GTV of each patient. Ac-
cording to the plan normalization, the PTV D95 by PB
was the nominal prescription dose. The percent D95 de-
ficiency values of the PTV and the GTV were selected as
the surrogate outputs for the current study on factors af-
fecting the dose conversion. The linear correlation be-
tween them was first evaluated to assess whether it was
necessary to explore either both or just one.

Patient-related feature extraction and quantification
For each patient, the following quantitative patient-related
indices, potentially affecting the magnitude of target D95
deficiency, were extracted:

(a)Target size - PTV volume (cm3), GTV volume (cm3),
MaxD (mm, defined as the maximum dimension of
the GTV).

(b)Target location - the mean and standard deviation of
the density, as surrogated by the Hounsfield Unit
(HU) on the 3D CT, for the following structures:
PTV, GTV, PTV margin (defined as PTV minus
GTV), Shell2mm (defined as the 2-mm-thick shell
structure immediately outside the PTV, which

Table 1 Patient, tumour, and treatment characteristics for the
patient cohort used in our study

Parameter Total

Patients 21 (9 central and 12 peripheral)

Median GTV, cm3 (range) 6.9 (0.6–6.9)

Median PTV, cm3 (range) 30.1 (7.2–110.2)

Median tumour (GTV) diameter,
cm (range)

3.1 (1.3–5.1)
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corresponded to the initial MLC aperture margin
before the manual tuning of the leaf positions),
Shell15mm (defined as the 15-mm-thick shell
immediately outside the PTV, which corresponded to
the region surrounding the PTV within the dmax of
6MV photons), and Shell50mm (defined as the 50-
mm-thick shell immediately outside the PTV, which
was randomly chosen to represent a broader region
surrounding the PTV that received high to low
radiation dose). If a shell structure outside the PTV
went beyond the patient body contour for a peripheral
lesion, only the portion inside the patient body was
considered. For the density indices, the density means
were used as the primary indices, and the density
standard deviations were used as the secondary
indices. Among all density features, the density of
GTV is unlikely a true location feature - as the density
of the gross tumour may be pathology rather than
location dependent – but was included in this
category for exploration purposes. In addition to the
density indices, dmin (mm) was also used for target
location, defined as the minimum distance from the
GTV surface to the nearest soft tissue.

(c)Lung density - the mean and standard deviation of
the lung density of the whole lungs (surrogated by
the HU on the 3D CT). The lung volume did not
exclude the tumour volume.

Quantitative analysis on the feature dependence
A comprehensive, quantitative analysis on the above fea-
tures and dose conversion outputs was conducted using
single linear regression, multiple linear regression, and
artificial neural network regression.

(1).Single linear regression
Linear regression was first used to study the
correlation between the two outputs, namely between
the D95 deficiency values of the PTV and the GTV. It
was then used to evaluate correlations between the
output and each of the above-described quantitative
indices (features). The regression was conducted using
Matlab, and the results were evaluated with the
coefficients of determination (R2).

(2).Multiple linear regression
Multiple linear regression models were tested with
the investigated features to identify a multiple-factor
model with the highest correlation coefficient and
statistically significant independent features. The
regression was conducted using Matlab. The models
were evaluated with the significance factor and P
values for individual features.

(3).Artificial neural network (ANN) regression
This ANN regression method was implemented
using the statistical language R [33]. A feed-forward

neural network with a single hidden layer was
constructed. This is the simplest type of ANN, in which
the information moves in only one direction from the
input layer through the hidden layer to the output
layer. A schematic is plotted in Fig. 1 illustrating the
simulation setup. In the input layer, six features were
selected, which were PTV volume, mean densities of
PTV margin, Shell2mm, Shell15mm, Shell50mm, and
Lung. In the output layer, there was only one node,
the percent PTV D95 deficiency, which was
normalized into the range from 0 to 1 in the training
dataset. The size of the hidden layer underwent an
optimisation procedure. This neural network method
was implemented using the R package, nnet, with the
multinomial log-linear model. To obtain the optimal
model, we employed the R package, caret, to search
the parameter space and estimate the model
performance for the given training dataset. The
optimised parameters were the size of the hidden
layer in the range of (2, 3, 4, 5, 6, and 7) and
weight decay in the range of (0.001, 0.005, 0.01,
0.05, 0.1, 0.5, and 1). The root mean square of
errors (RMSE) was calculated to evaluate the
performance of the ANN models and compare
the optimal ANN model with the multiple linear
regression model.

Results
Dosimetric comparison between PB and MC recalculated
plans
Similar to previous studies, in our patient cohort, the
MC dose calculation revealed considerable target under-
coverage compared with the original PB plan, yielding a
median (range) of percent D95 deficiency at 15.8 % (6.1–
32.0 %) for the PTV and 8.6 % (2.8–20.0 %) for the GTV,
respectively. Visual inspection of the isodose distribution
revealed that the target periphery was the primary region
of underdosage. This was to be expected, as the uncer-
tainty of the PB algorithm would be the largest at the per-
iphery of the target where the tumour-lung interface
caused a large density gradient. Therefore, the median
(range) percent differences of the target mean and max-
imum dose, Dmean and Dmax, were smaller, at 10.4 %
(4.0–24.6 %) and 4.7 % (0.9–14.5 %) for the PTV, and
6.2 % (2.9–18.6 %) and 4.7 % (0.6–14.6 %) for the GTV,
respectively. The dose differences for the OARs and
normal tissues were relatively small, within 3 % for all
structures.
Similar to the findings of previously published studies

[16], the percent D95 deficiency showed a strong linear
correlation between the PTV and GTV (R2 = 0.94), as
plotted in Fig. 2. Therefore, only percent PTV D95 defi-
ciency was used in the subsequent results to describe
the target dose conversion.
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Fig. 2 Scatter plot and linear regression between percent GTV and PTV D95 differences

Fig. 1 Schematic of the ANN regression setup
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Linear regression
The linear regression results on individual quantitative
features with the percent PTV D95 deficiency are plot-
ted in Fig. 3. Among the features, the target location in-
dices as a group showed higher correlations with the
dose conversion than the target size indices and lung
density. Among the target location features, all density
indices, except density of GTV, demonstrated fairly high
correlations with the dose conversion, while the distance
index dmin showed a relatively weaker correlation. The
lung density showed an intermediate correlation. Inter-
estingly, the correlations between the three target size
indices and the dose conversion were fairly weak.
For the percent PTV D95 deficiency, the following R2

values in decreasing order were found for the studied in-
dices: mean density of shell2mm (0.71), mean density of
PTV (0.68), mean density of PTV margin (0.65), mean
density of shell15mm (0.62), mean density of shell50mm
(0.49), mean density of lung (0.40), dmin (0.22), mean
density of GTV (0.19), MaxD (0.17), PTV volume (0.15),
GTV volume (0.08). As shown from the figures, the
density of the various structures is always negatively cor-
related with the percent PTV D95 deficiency. This is to
be expected, because the lower the density outside the
tumour - thus relating to higher density heterogeneity
between the tumour/surrounding - the more difficult it
is for the PB algorithm to calculate target dose, thus
leading to larger uncertainty or dose deficiency. Out of
these structures, the density of the shell2mm structure,
whose diameter corresponds to the initial block/MLC
margin used for planning before manual adjustments,
showed the strongest correlation. It can also be noted on
this plot that the linear regression fitting worked better
in the higher density region than the lower density re-
gion. Densities of PTV, GTV-to-PTV margin, and the
shell15mm structure also showed strong correlations,
which would indicate that the non-soft-tissue compo-
nents of the PTV, as well as the region within the pho-
ton dmax surrounding the PTV, had more influence on
the PB algorithm target dose calculation uncertainty
than the inner components of the PTV (such as GTV)
and the farther region surrounding the PTV (such as the
shell50mm structure and lung). For the other non-
density indices, as expected, the PTV and GTV sizes as
well as the maximum GTV diameter all showed negative
correlations, while the minimum distance between GTV
and the nearest soft-tissue showed a positive correlation
with the percent PTV D95 deficiency. However, the cor-
relations were all relatively weaker as compared with the
density-location indices.
On the linear regression analysis of the secondary

density indices, the density standard deviations of the
various studied structures showed varying degrees of
correlation. Regression with percent PTV D95 deficiency

calculated R2 values for density standard deviations as
listed in descending order: Shell50mm (0.50), Shell2mm
(0.48), GTV (0.39), PTV margin (0.36), PTV (0.15), lung
(0.06),and Shell15mm (0.01).

Multiple linear regression
Different feature combinations were tested in multiple
linear regression models. The most accurate model for
dose conversion was established with two independent
indices: the mean density of shell2mm and the PTV vol-
ume. Equation 1 describes the model:

%Dif f PTVD95 ¼ −0:6623 − 0:08136 � VPTV − 0:03784

� ���
HUShell2mm

ð1Þ

in which %Dif fPTVD95 is the predicted percent PTV D95
deficiency,VPTV is the volume of the PTV in cubic centi-
meters, and

���
HUShell2mm is the mean Hounsfield Units of

the 2-mm-thick shell structure immediately outside the
PTV. For this model, a high significance factor of 5.3 ×
10−7 was calculated, with statistically significant P values
for the two parameters (P = 0.012 for the PTV volume
and P = 1.9 × 10−7 for the mean density of shell2mm).
Adding other variables to this model, such as the

mean densities of PTV, GTV, lung, or PTV margin, de-
creased the significance factor of the model, and de-
creased the statistical significance of the original two
variables. The added variables also did not show statis-
tical significance (P > 0.05).
A slight improvement of the model was achieved by re-

placing the PTV volume feature with its surface area fea-
ture. The rationale was that the surface area, more than
the volume, affected the heterogeneous interface and dose
modeling error. The refined model is described in Eq. 2.

%Dif f PTVD95 ¼ 1:62022 − 0:45734 � VPTV
2=3− 0:03705

� ���
HUShell2mm

ð2Þ

The refined model yielded a higher significance factor
of 3.0 × 10−7, with P values of 0.006 and 1.6 × 10−7 for
the two model parameters.

Artificial neural network (ANN) regression
To explore the parameter space and identify the global
optimum, the ANN regression algorithm was employed
to test the combinations of the six selected features (six
predictors) for this machine-learning platform. Using
RMSE to select the optimal model for the ANN regres-
sion, the optimal model was identified with the size of
ANN nodes of 4 and the decay of 1.005. Using leave-
one-out cross validation on the 21 samples, the average
normalized RMSE was 0.072 with a standard deviation
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of 0.029, which did not significantly improve upon the
multiple linear regression model at an average normal-
ized RMSE of 0.091 with a standard deviation of 0.018
(P = 0.381 in a Mann–Whitney U test between the
square errors calculated by the two models). The results
of ANN regression further proved that the simple mul-
tiple linear regression model based on the two factors
described in Eq. 2 was robust and near optimal for all
potential combinations from the six parameters.

Discussion
Previous reports have identified target size, target loca-
tion, and lung density as the three most prominent pa-
tient factors that affect the target dose conversion, i.e.
the target dose calculation error by Type-A algorithms
[16, 17, 30], although sometimes a statistical difference
was not found between groups [28]. The underlying
challenge is the complexity of the involved factors and
their interplay; a large sample size is necessary to estab-
lish sufficient statistical power while the sample size is
reduced in folds through grouping and subgrouping
based on features in these kinds of investigations.
To exacerbate the problem, some grouping mecha-

nisms may introduce ambiguity. For example, the loca-
tion grouping of central and peripheral tumours was
historically introduced based on the consideration of
treatment toxicity. In the context of dose calculation
error in the heterogeneous media, this grouping method
does not always capture intrinsic differences. A periph-
eral tumour is more likely to be an “island” tumour, or a
tumour completely surrounded by low density lung tissue,
than a central tumour would, leading to higher target dose
calculation errors. However, a peripheral tumour may also
be close to high density tissues, such as the chest wall,
therefore leading to similar or even less target dose errors
than a central tumour. Figure 4 shows one such example,
comparing PB- and MC-calculated dose distributions. Be-
cause the tumour is attached to the chest wall, the target
dose difference is mostly on the lung side and consists of
a small magnitude. The percent PTV D95 difference be-
tween the PB and MC calculations for this patient was
only 8.7 %, the second lowest among our 21 patients.
Therefore, we chose to use the mean densities of the vari-
ous target-related structures as quantifiable and unam-
biguous location features.
To our knowledge, this is the first instance of such

a method being proposed in this context. Using all

Fig. 3 Scatter plot and single linear regression between percent PTV
D95 deficiency and mean density of Shell2mm (a), mean density of
PTV (b), mean density of PTV margin (c), mean density of Shell15mm
(d), mean density of Shell50mm (e), mean density of lung (f), dmin
(g), mean density of GTV (h), MaxD (i), PTV volume (j), and GTV
volume (k), respectively
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quantifiable features related to tumour location, tumour
size and lung density, we could systematically assess the
target dose difference dependence on these features, as
well as study the interplay among these features. Our
study found that tumour location, as surrogated by our
proposed mean density features, was the most influential
factor on the target dose difference. Tumour size, on the
other hand, showed much lower linear correlation. For
target location, the density features were also much more
sensitive than the distance feature, dmin, possibly due to
the fact that the dmin values among the patients were not
well-differentiated. In addition, the distance feature sam-
ples in only one direction, the direction with the nearest
soft-tissue to the tumour edge. In contrast, the density
features sample in all directions, and therefore better rep-
resent the location information related to target dose cal-
culation uncertainty.
By applying a Mann–Whitney U test on the PTV D95

differences to compare between the central and periph-
eral groups among our 21 patients, with the hypothesis

that the two groups were significantly different, we cal-
culated a P value of 0.352 which rejected the hypoth-
esis. In contrast, our density-location features calculated
highly significant correlations in single linear regression.
For example, the mean density of Shell2mm yielded a cor-
relation coefficient of −0.84, a much stronger correlation
than the threshold of −0.55 at P = 0.01 for our sample size.
These results indicated that the mean density designation
of location better extracted the location feature than the
conventional dichotomy of central and peripheral in the
context of target dose conversion between algorithms for
lung SBRT.
In addition to using the mean density features for lo-

cation, we also examined how the variability of density
affected the dose error through the investigation on
density standard deviation features. Interestingly, the re-
sults were largely different among different structures.
Figure 5a–c show the scatter plots for 3 example struc-
tures: Shell2mm, Shell15mm, and GTV. It was first sur-
prising to note that, while the density standard deviation

Fig. 4 Isodose distribution comparison between MC (left) and PB (right) dose calculations for one example patient. The calculated percent PTV
D95 difference was only 8.7 %, the second lowest among our 21 patients, for this peripheral tumour due to the close proximity of the tumour to
the chest wall
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of Shell2mm showed a negative correlation with the
dose conversion, that of GTV showed a weaker (yet
positive) correlation, and that of Shell15mm showed al-
most no correlation at all. These somewhat unexpected
observations became apparent after the correlations be-
tween the density standard deviations and their corre-
sponding density means were plotted in Fig. 5d–f. For

Shell2mm, the density standard deviation positively cor-
related with the density mean. This region immediately
surrounds the PTV. A lower mean density in Shell2mm
was more likely a PTV surrounded only by lung, and
hence had a smaller standard deviation. A higher mean
density, on the other hand, was more likely a PTV sur-
rounded by both lung and soft tissue, and hence had a

Fig. 5 The left panels show the scatter plot and single linear regression between percent PTV D95 difference and density standard deviation of
Shell2mm (a), GTV (b), and Shell15mm (c); and the right panels show the corresponding scatter plot and single linear regression between the
density standard deviation and the density mean of Shell2mm (d), GTV (e), and Shell15mm (f)
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larger standard deviation. In contrast, for GTV, the cor-
relation was the opposite. A higher mean GTV density
was more likely to be a more homogeneous, solid GTV,
and a lower mean GTV density more likely contained
greater low-density tissue components and hence greater
tissue heterogeneity (larger density standard deviation).
The lack of correlation between the density mean and
standard deviation in Shell15mm could explain the lack
of a correlation between the density standard deviation
and the dose conversion.
The quantifiable features designed for our study allowed

the examination on these features’ interplay through mul-
tiple factor regression analysis using both multiple linear
regression and ANN regression. The optimal model gen-
erated from multiple linear regression had two features,
one density-location feature,

���
HUShell2mm , and one feature

derived from target size,VPTV
2/3. It was initially somewhat

unexpected to find that adding additional seemingly inde-
pendent features that had high single linear regression R2

values, such as mean densities of PTV or PTV margin, de-
creased the performance of the model. This observation
was examined by plotting the mean densities of the vari-
ous structures against the PTV density. As shown in
Fig. 6a, there was actually a relatively strong positive linear
correlation between these density features. In contrast, a
volume feature such as the PTV volume, although by itself
showed low correlation on linear regression, strengthened
the multiple regression model because of its independence
as shown in Fig. 6b. One possible limitation of our model
was that Shell2mm, which showed the strongest single lin-
ear correlation and was hence used as the location feature
in the multiple model, corresponded to the initial MLC
block margin size used in our plans. While this may be
specific to our plans, the strong correlations shown in
Fig. 6a between the density-location features demonstrated
that any other more generic location feature such as the

density of PTV or PTV margin, could therefore replace
Shell2mm and still work relatively well in the multiple-
factor model.
In addition to revealing the quantitative dependence

relationship between the magnitude of the target dose
difference and the comprehensive list of features investi-
gated in our study through single-factor analyses, our
multiple-factor model and proposed methodology could
potentially facilitate the challenging yet necessary process
of understanding the relationship between historical out-
comes and true target dose to establish a proper prescrip-
tion guideline for the new MC-based paradigm. The best
approach for such an effort may be to systematically re-
view historical data and analyze, on a case-by-case basis,
the correlation between the “true” target dose received
based on the accurate MC recalculation of the original
treatment plan and the clinical outcomes. This way it can
be ascertained whether target underdoses due to calcula-
tion errors related to clinical failure. With this knowledge,
the “minimum curable target dose” may be established
using the accurate MC calculation. However, this type of
studies are difficult to conduct because most historical
cases with clinical outcomes may have been planned using
old treatment planning systems that have since been re-
tired from clinical operations, do not have MC algorithms
available, or may have been treated on retired LINACs
that prevent the commissioning of newly available MC al-
gorithms. Additionally, because of the low local recur-
rence rates associated with lung SBRT, studies with very
large sample sizes are likely required to yield meaningful
information. For example, in a study with a large cohort
of 82 tumours [18], though able to show a significant cor-
relation between target dose and local control, the target
dose differences came from the original prescription dif-
ferences rather than the Type-A algorithm target dose cal-
culation errors involved in the original prescriptions. On

Fig. 6 a Scatter plot and single linear regression shows fairly strong correlation between the mean density of PTV and that of PTV margin and
Shell2mm. b Scatter plot and single linear regression shows the lack of correlation between the mean density of PTV and the volume of PTV
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these regards, our model or other models generated with
similar methodologies as ours could be easily applied to a
very large number of historical cases and scale up the
meaningful investigations on clinical outcomes vs. true
target dose.
In our study, the advanced machine learning method,

ANN regression, did not significantly improve upon the
simple 2- factor multiple linear regression model. Aside
from the satisfactory performance of the multiple linear
regression model, the accuracy of the ANN regression
might also be limited by the small size of our training
data set (21 patients), largely because a machine-learning
algorithm requires a large volume of training data.
Another limitation of our study is the possible depend-

ence of our quantitative results on the specifics of our
plans. For example, the Shell2mm structure corresponds
to the 2 mm initial MLC block margins used in our plans,
although as discussed above, the other non-specific struc-
tures such as PTV or PTV margin could easily replace
Shell2mm and still create accurate models. The quantita-
tive results may also be influenced by other specifics of
our plans, such as beam energy, planning and delivery
technique, and prescription isodose line. Firstly, our plans
used 6 MV beams, which would result in lower target
dose differences based on different algorithms than would
higher energy beams such as 10 MV, and higher differ-
ences than would lower energy beams such as 6 MV in
flattening-filter-free mode. Secondly, our plans used dy-
namic conformal arcs, which may exhibit similar quantita-
tive dependence as plans with multiple conformal beams,
but may be quite different from intensity-modulated treat-
ments such as intensity-modulated radiation therapy
(IMRT) and volumetric-modulated arc therapy (VMAT),
wherein the target coverage is created by an ensemble of
small beamlets. However, because we are mostly inter-
ested in better modeling the dose difference from the earl-
ier era from which most historical data were generated,
dynamic conformal arcs and multiple conformal beams
may indeed be the most relevant treatment techniques. A
similar limitation of our study is the margin-based motion
management used for our plans, i.e. the ITV-based target
definition. Because the amount of low-density margin im-
pacts the magnitude of the algorithm-related target dose
difference, as shown by our study, the target differences in
our study would be higher than other motion manage-
ment methods requiring less target margin such as track-
ing. This may render our quantitative model not directly
applicable to some CyberKnife datasets [9, 12, 17, 26, 28].
Lastly, while the plans in our study had fairly homoge-
neous target dose (prescribed at about 90 % of the max-
imum dose) based on our own clinical practice, larger
target dose heterogeneity is allowed and has been used for
lung SBRT. For example, RTOG protocols accept a wide
range of prescription isodose lines between 60 % and 90 %

[2, 3]. A recent study demonstrated the dependence of
algorithm-related target dose differences on this planning
parameter [34], indicating a higher sensitivity to dose algo-
rithms for plans using a more homogeneous target dose
prescription. Therefore, the absolute magnitudes of target
dose differences in our study would be lower if more het-
erogeneous target dose prescriptions were used instead.
On the other hand, while the quantitative model from our
study may not directly apply to clinical cases with the
above-mentioned planning/delivery specifics, our pro-
posed methodology is easily transferable and applicable to
those data sets.
In our study, we explored D95 of PTV and GTV as the

model outputs. After identifying a high linear correlation
between PTV D95 and GTV D95, we reported in this
paper the results based on PTV D95 as the model out-
put. While this was a reasonable choice, as PTV D95
has been (and still is) the standard prescription practice
for lung SBRT, a few recent studies have proposed alter-
native prescription concepts such as GTV maximum
and GTV mean doses [9, 12, 16, 35, 36]. As shown herein,
with centralized maximum dose planning concepts, such
parameters – especially the maximum dose – are less sen-
sitive to algorithm-related target dose differences than
peripheral dose parameters such as D95. Also, GTV may
be a dosimetrically more suitable surrogate than PTV es-
pecially with algorithms such as MC that can accurately
handle heterogeneity in dose calculations, because the
low-density tissue in the PTV margin does not accurately
predict dose to the dense tumor. While these concepts still
have some unresolved practical challenges, such as a way to
ensure the geometric coverage provided by the conven-
tional PTV concept in plan optimization, recent studies
have already started to establish the dose–response relation-
ship based on such concepts. For example, Guckenberger
et al. [35] reported a retrospective multi-institutional study
on 399 patients with stage I non-small cell lung cancer
and 397 patients with 525 lung metastases, in which the
local control was shown to explicitly depend not only on
PTV prescription dose, but also significantly on GTV
maximum and mean doses. To preliminarily explore these
alternative prescription concepts, we also analyzed the
correlations of PTV D95 to the mean and maximum
doses of PTV and GTV, and conducted quantitative ana-
lyses of the studied patient factors using these latter target
dose surrogates as the output endpoints in our datasets.
Unsurprisingly, the maximum doses of PTV and GTV
were virtually the same in plans with centralized max-
imum dose concepts. As plotted in Fig. 7, linear correl-
ation with R2 values of 0.93, 0.86, and 0.70 were calculated
between PTV D95 and PTV mean dose, GTV mean dose,
and GTV maximum dose, respectively. As expected, these
alternative endpoints showed weaker dependence on the
target location and volume features than PTV D95, with
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the weakest for GTV maximum dose. Correlation with
target location features was still statistically significant in
multivariate analyses for these endpoints, with the stron-
gest linear correlation R2 values with PTV density at 0.65,
0.64 and 0.60 for PTV mean dose, GTV mean dose, and
GTV maximum dose, respectively.
In summary, because of the different levels of dose cal-

culation uncertainty for PB at different target locations
(hence involving different levels of heterogeneity), the
quantitative dependence for these alternative prescrip-
tion concepts may be different from PTV D95 studied in
our work. It is possible that these new prescription con-
cepts may lead to a complete paradigm shift for future
lung SBRT applications. However, currently the PTV
D95 based prescription still represents the mainstay of
standard clinical practices. Furthermore, an accurate tar-
get dose understanding of the current and historical
plans using this prescription concept, such as those pro-
vided by our current model and methodology, will also
serve as the foundation for future research to compare
with the newer, alternative prescription concepts.

Conclusion
Using 21 lung SBRT patients, our pilot study for the first
time quantitatively analyzed the dependence of the tar-
get dose differences between PB and MC dose calcula-
tions on various patient factors such as target size,
location, and lung density. We also applied multiple lin-
ear regression and artificial neural network to establish
continuous models to predict the dose conversion ratio

based on these factors. The target location indices were
found to have the largest influence on the dose conver-
sion, with R2 > 0.6 in linear regression for the mean
densities of the PTV, the GTV-to-PTV margin, and the
high-dose region immediately outside the PTV. The
multiple-factor models yielded high significance factors.
Further studies are warranted to refine the models based
on larger patient populations, for which machine learn-
ing methods may provide additional improvements, and
apply the improved models to retrospectively analyze
large-scale historical data to potentially correlate accur-
acy of PB dose prescriptions and clinical outcomes.
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