158 research outputs found

    Low Resistivity Contrast Gas Bearing Formation Identification from Conventional Logs in Tight Gas Sandstones

    Get PDF
    It’s a great challenge in identifying gas bearing formation from conventional logs in tight gas sandstones due to the low resistivity contrast caused by high irreducible water saturation. Based on the difference of the principles of three kinds of porosity logs (density, neutron and acoustic logs), three porosities difference method, three porosities ratio method, correlation of neutron and density logs and the overlap method of water-filled porosity and total porosity are introduced to identify tight gas bearing reservoirs. In gas bearing formations, the difference of three porosities is higher than 0.0, the ratio of three porosities is higher than 1.0, the correlation between density and neutron logs is negative, and the water filled porosities are lower than total porosities. On the contrary, in water saturated formations, the difference of three porosities is lower than 0.0, the ratio of three porosities is lower than 1.0, the correlation between density and neutron logs is positive, and the water filled porosities are overlapped with total porosities. Considering the complexity of in-suit formation, when the proposed identification criterion are mainly meet, the pore fluid should be determined, field examples show that the proposed techniques are applicable in tight gas formation identification.Key words: Low resistivity contrast gas bearing formation; Tight gas sandstones;  Identification; Difference of three porosities; Ratio of three porosities; Correlation of neutron and density log

    A Zebrafish Model for Studies on Esophageal Epithelial Biology

    Get PDF
    Mammalian esophagus exhibits a remarkable change in epithelial structure during the transition from embryo to adult. However, the molecular mechanisms of esophageal epithelial development are not well understood. Zebrafish (Danio rerio), a common model organism for vertebrate development and gene function, has not previously been characterized as a model system for esophageal epithelial development. In this study, we characterized a piece of non-keratinized stratified squamous epithelium similar to human esophageal epithelium in the upper digestive tract of developing zebrafish. Under the microscope, this piece was detectable at 5dpf and became stratified at 7dpf. Expression of esophageal epithelial marker genes (Krt5, P63, Sox2 and Pax9) was detected by immunohistochemistry and in situ hybridization. Knockdown of P63, a gene known to be critical for esophageal epithelium, disrupted the development of this epithelium. With this model system, we found that Pax9 knockdown resulted in loss or disorganization of the squamous epithelium, as well as down-regulation of the differentiation markers Krt4 and Krt5. In summary, we characterized a region of stratified squamous epithelium in the zebrafish upper digestive tract which can be used for functional studies of candidate genes involved in esophageal epithelial biology

    Integrated modelling of crop production and nitrate leaching with the Daisy model

    Get PDF
    An integrated modelling strategy was designed and applied to the Soil-Vegetation-Atmosphere Transfer model Daisy for simulation of crop production and nitrate leaching under pedo-climatic and agronomic environment different than that of model original parameterisation. The points of significance and caution in the strategy are: • Model preparation should include field data in detail due to the high complexity of the soil and the crop processes simulated with process-based model, and should reflect the study objectives. Inclusion of interactions between parameters in a sensitivity analysis results in better account for impacts on outputs of measured variables. • Model evaluation on several independent data sets increases robustness, at least on coarser time scales such as month or year. It produces a valuable platform for adaptation of the model to new crops or for the improvement of the existing parameters set. On daily time scale, validation for highly dynamic variables such as soil water transport remains challenging. • Model application is demonstrated with relevance for scientists and regional managers. The integrated modelling strategy is applicable for other process-based models similar to Daisy. It is envisaged that the strategy establishes model capability as a useful research/decision-making, and it increases knowledge transferability, reproducibility and traceability

    Transcript Profiling Identifies Dynamic Gene Expression Patterns and an Important Role for Nrf2/Keap1 Pathway in the Developing Mouse Esophagus

    Get PDF
    Morphological changes during human and mouse esophageal development have been well characterized. However, changes at the molecular level in the course of esophageal morphogenesis remain unclear. This study aims to globally profile critical genes and signaling pathways during the development of mouse esophagus. By using microarray analysis this study also aims to determine how the Nrf2/Keap1 pathway regulates the morphogenesis of the esophageal epithelium.Gene expression microarrays were used to survey gene expression in the esophagus at three critical phases: specification, metaplasia and maturation. The esophagi were isolated from wild-type, Nrf2(-/-), Keap1(-/-), or Nrf2(-/-)Keap1(-/-) embryos or young adult mice. Array data were statistically analyzed for differentially expressed genes and pathways. Histochemical and immunohistochemical staining were used to verify potential involvement of the Wnt pathway, Pparβ/δ and the PI3K/Akt pathway in the development of esophageal epithelium.Dynamic gene expression patterns accompanied the morphological changes of the developing esophagus at critical phases. Particularly, the Nrf2/Keap1 pathway had a baseline activity in the metaplasia phase and was further activated in the maturation phase. The Wnt pathway was active early and became inactive later in the metaplasia phase. In addition, Keap1(-/-) mice showed increased expression of Nrf2 downstream targets and genes involved in keratinization. Microarray and immunostaining data also suggested that esophageal hyperkeratosis in the Keap1(-/-) mice was due to activation of Pparβ/δ and the PI3K/Akt pathway.Morphological changes of the esophageal epithelium are associated with dynamic changes in gene expression. Nrf2/Keap1 pathway activity is required for maturation of mouse esophageal epithelium

    Seabuckthorn Paste Protects Lipopolysaccharide-Induced Acute Lung Injury in Mice through Attenuation of Oxidative Stress

    Get PDF
    Oxidative stress is one of the major mechanisms implicated in endotoxin-induced acute lung injury. Seabuckthorn paste (SP), a traditional Tibetan medicine with high content of polyphenols and remarkable antioxidant activity, is commonly used in treating pulmonary diseases. In the present study, the protective effects and possible underlying mechanisms of SP on lipopolysaccharide- (LPS-) induced acute lung injury in mice were investigated. It was found that body weight loss, lung tissue microstructure lesions, transvascular leakage increase, malondialdehyde augmentation, and the reduction of superoxide dismutase and glutathione peroxidase levels caused by LPS challenge were all consistently relieved by SP treatment in a dose-dependent manner. Moreover, accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2) in lung nuclei caused by SP treatment was observed. Our study demonstrated that SP can provide significant protection against LPS-induced acute lung injury through maintaining redox homeostasis, and its mechanism involves Nrf2 nuclear translocation and activation

    Sensitivity of simulated crop yield and nitrate leaching of the wheat-maize cropping system in the North China Plain to model parameters

    Get PDF
    Process-based crop simulation models are often over-parameterised and are therefore difficult to calibrate properly. Following this rationale, the Morris screening sensitivity method was carried out on the DAISY model to identify the most influential input parameters operating on selected model outputs, i.e. crop yield, grain nitrogen (N), evapotranspiration and N leaching. The results obtained refer to the winter wheat-summer maize cropping system in the North China Plain. In this study, four different N fertiliser treatments over six years were considered based on a randomised field experiment at Luancheng Experimental Station to elucidate the impact of weather and nitrogen inputs on model sensitivity. A total of 128 parameters were considered for the sensitivity analysis. The ratios [output changes/parameter increments] demonstrated high standard deviations for the most relevant parameters, indicating high parameter non-linearity/interactions. In general, about 34 parameters influenced the outputs of the DAISY model for both crops. The most influential parameters depended on the output considered with sensitivity patterns consistent with the expected dominant processes. Interestingly, some parameters related to the previous crop were found to affect output variables of the following crop, illustrating the importance of considering crop sequences for model calibration. The developed RDAISY toolbox used in this study can serve as a basis for following sensitivity analysis of the DAISY model, thus enabling the selection of the most influential parameters to be considered with model calibration

    Affective and Cognitive Empathy in Pre-teachers With Strong or Weak Professional Identity: An ERP Study

    Get PDF
    Pain empathy is influenced by a number of factors. However, few studies have examined the effects of strength of professional identity on pain empathy in pre-service teachers. This study used the event-related potential (ERP) technique, which offers a high temporal resolution, to investigate the neurocognitive mechanisms of pain empathy in pre-teachers with strong or weak professional identity. The N110 and P300 components have been shown to reflect an individual’s emotional sharing and cognitive evaluation in pain empathy, respectively. The results of the current study show that pre-teachers with strong professional identity showed a significant difference in N110 amplitudes evoked towards painful and non-painful stimuli; whereas pre-teachers with weak professional identity did not show a significant difference in the amplitudes evoked by the two stimulus types. For the P300 component, pre-teachers with weak professional identity showed a significant difference in the amplitudes evoked towards painful and non-painful stimuli; whereas pre-teachers with strong professional identity did not show a significant difference in the amplitudes evoked by the two stimulus types. Our results indicate that pre-teachers with strong professional identity show a higher level of pain empathy than those with weak professional identity

    Impaired Magnesium Protoporphyrin IX Methyltransferase (ChlM) Impedes Chlorophyll Synthesis and Plant Growth in Rice

    Get PDF
    Magnesium protoporphyrin IX methyltransferase (ChlM) catalyzes the formation of magnesium protoporphyrin IX monomethylester (MgPME) from magnesium protoporphyrin IX (MgP) in the chlorophyll synthesis pathway. However, no ChlM gene has yet been identified and studied in monocotyledonous plants. In this study, a spontaneous mutant, yellow-green leaf 18 (ygl18), was isolated from rice (Oryza sativa). This mutant showed yellow-green leaves, decreased chlorophyll level, and climate-dependent growth differences. Map-based cloning of this mutant identified the YGL18 gene LOC_Os06g04150. YGL18 is expressed in green tissues, especially in leaf organs, where it functions in chloroplasts. YGL18 showed an amino-acid sequence similarity to that of ChlM from different photosynthetic organisms. In vitro enzymatic assays demonstrated that YGL18 performed ChlM enzymatic activity, but ygl18 had nearly lost all ChlM activity. Correspondingly, the substrate MgP was largely accumulated while the product MgPME was reduced in ygl18 leaves. YGL18 is required for light-dependent and photoperiod-regulated chlorophyll synthesis. The retarded growth of ygl18 mutant plants was caused by the high light intensity. Moreover, the higher light intensity and longer exposure in high light intensity even made the ygl18 plants be more susceptible to death. Based on these results, it is suggested that YGL18 plays essential roles in light-related chlorophyll synthesis and light intensity–involved plant growth
    • …
    corecore