95 research outputs found

    A potential antibody repertoire diversification mechanism through tyrosine sulfation for biotherapeutics engineering and production

    Get PDF
    The diversity of three hypervariable loops in antibody heavy chain and light chain, termed the complementarity-determining regions (CDRs), defines antibody’s binding affinity and specificity owing to the direct contact between the CDRs and antigens. These CDR regions typically contain tyrosine (Tyr) residues that are known to engage in both nonpolar and pi stacking interaction with antigens through their complementary aromatic ring side chains. Nearly two decades ago, sulfotyrosine residue (sTyr), a negatively charged Tyr formed by Golgi-localized membrane-bound tyrosylprotein sulfotransferases during protein trafficking, were also found in the CDR regions and shown to play an important role in modulating antibody-antigen interaction. This breakthrough finding demonstrated that antibody repertoire could be further diversified through post-translational modifications, in addition to the conventional genetic recombination. This review article summarizes the current advances in the understanding of the Tyr-sulfation modification mechanism and its application in potentiating protein-protein interaction for antibody engineering and production. Challenges and opportunities are also discussed

    Exploration of High Entropy Ceramics (HECs) with Computational Thermodynamics - A Case Study with LaMnO3±δ

    Get PDF
    The concept of the new category materials high entropy ceramics (HECs) has been proposed several years ago, which is directly borrowed from high entropy alloys (HEAs). It quickly attracts a lot of interests and displays promising properties. However, there is no clear definition of HECs differentiating it from HEAs, as it is still in its early research stage. In the current work, we are trying to use the classic perovskite LaMnO3±δ (LMO) to demonstrate the fundamental differences between HECs and HEAs. We have adopted the integrated defect chemistry and CALPHAD approach to investigate the mixing behavior and how it is affected by the control parameters, i.e. PO2, T, and composition. We have developed a new way to visualize the mixing behavior of the species including the cations, anions, and defects (vacancies), which linked the mixing behavior to the thermo-chemical properties including enthalpy, entropy, and Gibbs energy. It was found that entropy plays the most important role on the mixing behavior in LMO. The present work paves the way for the HECs investigation and the design of new HECs for the various applications

    Inhibition of protein FAK enhances 5-FU chemosensitivity to gastric carcinoma via p53 signaling pathways

    Get PDF
    Abstract(#br)The small molecule drug 5-fluorouracil (5-FU) is widely used in the treatment for gastric cancer (GC), however, it exerts poor efficacy and is associated with acquired and intrinsic resistance. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays a key role in adhesion, migration, and proliferation of gastric carcinoma cells, suggesting that this kinase may be a promising therapeutic target. Differentially expressed FAK in GC tissue was detected by RT-qPCR and TCGA database analysis. To investigate the biological functions of FAK, loss-of-function experiments were performed. CCK-8 assay, colony formation assay, flow cytometry, dual-luciferase reporter assays, and western blot assays were conducted to determine the underlying mechanisms of FAK in 5-FU chemosensitivity in GC. FAK is overexpressed in GC patients, and positively correlated with poor prognosis. The use of shRNA interference to target FAK decreased proliferation and increased apoptosis of GC cells in vitro. Importantly, FAK silencing enhanced the therapeutic efficacy of 5-FU, leading to reduced tumor growth in vivo . We further demonstrated that FAK silencing increased 5-FU-induced caspase-3 activity, and promoted p53 transcriptional activities. Clinical data also has shown that patients with higher levels of FAK had significantly shorter overall survival (OS) and time to first progression (FP) than those with lower levels of FAK. These findings indicate that FAK plays a critical role in 5-FU chemosensitivity in GC, and the use of FAK inhibitors as an adjunct to 5-FU might be an effective strategy for patients who undergo chemotherapy

    Synthesis and biological evaluation of novel folic acid receptor-targeted, β-cyclodextrin-based drug complexes for cancer treatment

    Get PDF
    Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5-2.5 nm. The host-guest association constant Ka was 1,639 M-1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer

    New Opportunities in Glycan Engineering for Therapeutic Proteins

    No full text
    Glycans as sugar polymers are important metabolic, structural, and physiological regulators for cellular and biological functions. They are often classified as critical quality attributes to antibodies and recombinant fusion proteins, given their impacts on the efficacy and safety of biologics drugs. Recent reports on the conjugates of N-acetyl-galactosamine and mannose-6-phosphate for lysosomal degradation, Fab glycans for antibody diversification, as well as sialylation therapeutic modulations and O-linked applications, have been fueling the continued interest in glycoengineering. The current advancements of the human glycome and the development of a comprehensive network in glycosylation pathways have presented new opportunities in designing next-generation therapeutic proteins

    Biological Insights into Therapeutic Protein Modifications throughout Trafficking and Their Biopharmaceutical Applications

    Get PDF
    Over the lifespan of therapeutic proteins, from the point of biosynthesis to the complete clearance from tested subjects, they undergo various biological modifications. Therapeutic influences and molecular mechanisms of these modifications have been well appreciated for some while remained less understood for many. This paper has classified these modifications into multiple categories, according to their processing locations and enzymatic involvement during the trafficking events. It also focuses on the underlying mechanisms and structural-functional relationship between modifications and therapeutic properties. In addition, recent advances in protein engineering, cell line engineering, and process engineering, by exploring these complex cellular processes, are discussed and summarized, for improving functional characteristics and attributes of protein-based biopharmaceutical products
    • …
    corecore