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A potential antibody repertoire
diversification mechanism
through tyrosine sulfation for
biotherapeutics engineering
and production

Xiaotian Zhong* and Aaron M. D’Antona*

BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, MA, United States
The diversity of three hypervariable loops in antibody heavy chain and light

chain, termed the complementarity-determining regions (CDRs), defines

antibody’s binding affinity and specificity owing to the direct contact

between the CDRs and antigens. These CDR regions typically contain

tyrosine (Tyr) residues that are known to engage in both nonpolar and pi

stacking interaction with antigens through their complementary aromatic ring

side chains. Nearly two decades ago, sulfotyrosine residue (sTyr), a negatively

charged Tyr formed by Golgi-localized membrane-bound tyrosylprotein

sulfotransferases during protein trafficking, were also found in the CDR

regions and shown to play an important role in modulating antibody-antigen

interaction. This breakthrough finding demonstrated that antibody repertoire

could be further diversified through post-translational modifications, in

addition to the conventional genetic recombination. This review article

summarizes the current advances in the understanding of the Tyr-sulfation

modification mechanism and its application in potentiating protein-protein

interaction for antibody engineering and production. Challenges and

opportunities are also discussed.

KEYWORDS

antibody repertoire diversification, tyrosine sulfation, complementarity determination
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Introduction

Antibody therapeutics represent the largest group of biologic drugs with over 100

approved products on the market, providing a significant treatment impact on cancer,

immune-mediated disorders, infectious diseases, and cardiovascular/hemostasis

disorders (1, 2). Antibodies have favorable attributes such as metabolic stability,
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specificity, and potency, which can be further enhanced by

protein engineering (3–5). A new wave of multispecific

innovation (6–10) as well as recent speedy development of

antibody products targeting SARS-CoV-2 (2, 11, 12) have

demonstrated antibody therapeutics’ important roles in

addressing complex disease pathobiology and global

health challenges.

Human immunoglobulin G (IgG) is the dominant antibody

drug format for recombinant therapeutic antibodies, among the

isotypes of IgA, IgD, IgE and IgM (13, 14). IgGs are

heterodimers with two identical heavy chains (HC) and light

chains (LC) containing constant domains and variable domains

(VH or VL). An intact antibody molecule consists of two

fragment antigen binding domains (Fabs) and the fragment

crystallizable (Fc) that carries out effector function through

binding to different Fc receptor proteins on effector cells or by

activating immune mediators like complements (13–16). In the

Fab regions, the domains of VL and VH are paired to form the

antigen binding site, in which three regions of sequence

variability termed the complementarity-determining regions

(CDRs) are the hypervariable loops in contact with antigens

(13, 14). The paratope at these six CDRs from HC and LC

determines antibody’s binding affinity and specificity to the

epitope on the antigens.

The diversity of antibody CDRs is mainly generated through

the genetic processes of V(variable), D (diversity), and J (joining)

recombination and somatic hypermutation, occurred during B
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cell development in the bone marrow and upon encounters of

antigen in the periphery (17–20). The introduction of

combinatorial and junctional diversity in the V regions, as well

as point mutations in the rearranged V regions after contact of

naïve or memory B cells with antigens, create the diversity of

antibody repertoires (19–21). Further investigations have revealed

that the immune systems can employ post-translational

modifications (PTMs) to increase antibody diversification. The

first such concrete example is tyrosine (Tyr) sulfation in which a

negatively charged sulfo group is added to the phenol group of Tyr

through an O4-sulfate ester (22–24) (Figure 1A). Choe and

colleagues first reported that anti-HIV-1 gp120 antibodies’

CDRH3s were Tyr-sulfated that modulated specifically the

antibody-antigen interaction (29). This finding demonstrated

that Tyr sulfation could be part of the natural humoral immune

response to viral infection (30). Subsequently, several other types

of unconventional mechanisms which utilize various PTMs to

regulate humoral immune responses and antibody diversification

have been discovered [reviewed by (31)]. Over the past twenty

years, a significant understanding upon the molecular

mechanisms of Tyr-sulfation modification and the biological

function of the resulting sulfo-Tyr (sTyr) has been shown in

protein-protein interaction for peptide hormones, cell surface

receptors, virus entry, chemokine signaling, and blood clotting

enzymes [see recent reviews, (23–26, 32, 33)]. New examples and

mechanistic insights for the role of sTyr in modulating antibody

diversification have been reported (28, 34–47). This review focuses
A B
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FIGURE 1

(A) Mechanisms of Tyr-sulfation in mammalian cells. (B) Primary structures of human TPST and plant TPST (25, 26) (created with BioRender.com).
Conserved residue Lys (R) in 5’-PSB, Ser (S) in 3’-PB, and catalytic base residue His (H) and Glu (E) are depicted. (C) Comparison of electrostatic
potentials for sTyr, pTyr (-1) and pTyr (-2) (27). (D) Production of sTyr-containing Fab with extended genetic codon technologies (28).
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on the comprehensive summary of these recent progresses and

their potential impacts on applying sTyr in antibody engineering

and production. Challenges and perspective for therapeutics

development are discussed.
Tyr-sulfation- a biologically
active sulfation

The tyrosylprotein sulfotransferases (TPSTs) pathway (48,

49) is the key synthesis pathway for Tyr-sulfation in antibody.

Biological utilization of inorganic sulfate for sTyr, and other

sul fa ted biomolecu les (su l fa ted carbohydra tes , or

neurotransmitters), requires the metabolic activation into

adenosine-5’-phosphosulfate (APS) by ATP sulfurylase (ATPS)

and further into 3’-phosphoadenosine-5’-phosphosulfate

(PAPS) by APS kinase (22, 23, 25, 26, 32, 33, 50). In animal

cells, the APS and ATPS are fused to form a single bifunctional

PAPS synthase (PAPSS). The inorganic sulfate ion for the PAPS

synthesis is transported from outside into the cytosol through

plasma membrane transporter SLC26A2 (Figure 1A) (51, 52).

Then the PAPS is translocated into the Golgi lumen through the

PAPS transporters SLC35B2 and SLC35B3 (53, 54). PAPS is the

main activated sulfate group donor for sulfotransferases that

catalyze biological sulfation. TPSTs is a major member of

sulfotransferases, which also include cytosolic sulfotransferases

for sulfation of hormones, neurotransmitters, as well as drugs

and xenobiotics (32, 55–57) and membrane-bound carbohydrate

sulfotransferase for the sulfation of glycolipid, glycoproteins, and

proteoglycans (56, 58). The Golgi-localized membrane-bound

TPSTs mediates Tyr-sulfation in antibodies, many other

secreted proteins and integral membrane proteins (48, 49,

59, 60).

Tyr sulfation was first reported nearly seventy years ago (61),

yet its physiological significance and link to diseases haven’t

begun to be appreciated until the cloning of TPST genes more

than two decades ago (48, 49). TPSTs are widely expressed in

most tissues, and conserved from worm to mammals, and plants

but not in yeast and most of the prokaryotes (22, 23, 25, 26).

Human TPST1 and 2 exhibit different expression patterns, e.g.,

TPST1 is more in testis and TPST2 is more in the blood, trachea,

thyroid gland, and several other organs (25). These two isoform

enzymes also have different substrate specificities (62–64) and

distinct mouse knockout phenotypes (65, 66), indicating a

difference in specific biological functions (65–67). Animal

TPSTs are type II membrane glycoproteins with a length of

around 370 amino acids (25, 26). Like those of the cytoplasmic

sulfotransferases and saccharide sulfotransferases, the enzymatic

domain of TPSTs contains two short sequence motifs, termed 5’-

phosphosulfate binding motif (PSB) and 3’-phosphate binding

(PB) motif, and a catalytic base residue (His or Glu). They also

contain spacing sequences with varying lengths among the

functional domains (25, 26, 68) (Figure 1B). These enzymes
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are optimally active at slightly acidic pHs, consistent with their

Golgi localization.

There is no unambiguous consensus sequence motif defined

for prediction of Tyr sulfation sites in proteins. The common

predictors include Tyr residues flanked by acidic residues, large

accessible surface areas, and flexible or disordered secondary

structure regions fitting well into the cleft of TPSTs. There are

several in silico algorithm tools for predicting sulfation, such as

the Sulfinator algorithm (69), the SulfoSite (70), The PredSulSite

(71), and the Sulfotyrosine site (72). The current publicly

available active online tool is Sulfinator (http://web.expasy.org/

sulfinator) that has been frequently utilized. Antibodies are

underrepresented in these machine learning algorithms, and

the data of accuracy in predicting Tyr-sulfation for antibodies

remain limited. It is well known that sTyr residues are

neighboring with acidic amino acid (73). Presence of acidic

residues, glutamic and aspartic acids, within +5 to -5 positions of

the Tyr increase the activity of TPSTs (74, 75). These residues

make multiple electrotactic interactions proximal to the active

site of TPSTs (76–78). A basic residue in the amino-terminal (-1)

position of the Tyr abolishes sulfation 76), as the negative charge

of glutamic acid at this position is recognized by the backbone

amide nitrogen of TSPTs (78). The presence of Gly or Asn

residues surrounding sTyr tends to increase sulfation (62). The

role of structural flexibility in sulfation regions could imply that

the solvent-exposed and flexible CDRs is more likely Tyr-

sulfated than the framework regions in antibodies (79).

Through determining protein-protein interaction, Tyr-

sulfation has been involved in many biological processes,

including blood coagulation, leukocyte rolling, complement

cascade, hormonal regulation, viral infection, chemokine

signaling, collagen binding, and Wnt signaling (22, 23, 25, 26,

80). These examples in nature illustrate the intricate mechanisms

through which sTyr is utilized in protein-protein interactions,

providing a guiding principle for the application of sTyr residue

[For details see a recent review by (26)].
Unconventional diversification for
antibody repertoire through sTyr.

As a bulky amino acid that can facilitate hydrophobic

interaction, Tyr residue is frequently found in CDR regions of

antibodies and sulfation can presumably occur to some of these

Tyr residues in the CDR loops. Hence discovering sTyr in

antibody repertoire shouldn’t be a surprise in principle, yet the

finding didn’t happen until 20 years ago. This is probably due to

the fact that sTyr is heat labile and can be rapidly hydrolyzed

under strong acidic condition. These features made sTyr residue

difficult to be identified reliably with analytical tools such as

standard Edman sequencing and mass spectrometry (23, 26).

The conclusive identification of sTyr residues in antibody CDRs

by Choe and colleagues was through traditional radioactive
frontiersin.org
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labeling using 35S-sulfate (29). A set of patient-derived human

monoclonal antibodies against HIV-1 envelope glycoprotein

gp120 was metabolically labeled with 35S-sulfate in

transformed human cell lines during recombinant expression.

Only the HCs were labeled and subsequently Tyr residues in

CDRH3 were found sulfated. These sTyr residues contribute

directly to antibody engagement with gp120, as in the case of

CCR5 with overlapping regions in gp120. Despite structural

differences between the Fab and CCR5 N-terminus, one sTyr

residue in either the Fab or CCR5 is recognized in a similar

manner by gp120 (35), indicating that the antibody mimics

mechanistically the CCR5 for interacting with gp120.

Interestingly, these sulfated antibodies were obtained from

three different individuals. sTyr residues in two of these

sulfated antibodies were originated from a common VH gene

V1-69, whereas those in other three sulfated antibodies were

from the longest of six HC joining gene JH6. This landmark

finding demonstrated for the first time that Tyr-sulfation can

contribute to the potency and diversity of human

antibody repertoire.

There are additional antibodies with sTyr being reported

(Table 1). Consistent with the knowledge that CDRH3 is much

more diverse because of the VDJ gene rearrangement versus V

gene only for CDRH1/2, CDRL1/2, and V gene and J gene

recombination for CDRL3 (21), there are more sTyr found in the

CDRH3. There are a number of examples of clustered sTyr

found in CDRH3 (Table 1). Some of them were not functional

whereas some contributed to the potency and diversity of the

antibody. Huang et al. (34) hypothesized that the CDRH3 could

be the only CDR long enough and diverse enough to be a

substrate for Tyr sulfation. This is further supported by the fact

that Tyr is often a bias outcome of the VDJ rearrangement as

many IGHD genes have nucleotide sequence TAC (codon for

Tyr) at their 3’ end (21), which could further skew toward a

potential sTyr site. Interestingly, the non-functional Tyr-

sulfation is ordered whereas those functional are disordered

and therefore might be flexible enough for stereochemical
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orientation. This is consistent with the fact that there are quite

a few Fab alone structures but no high-resolution structure of

functional sTyr-containing Fabs complexed with the target

antigens (Figure 2A). Regarding the activity, both antibody

PG9 and PG16 contained sTyr residue in a unique

hammerhead CDRH3 subdomain (Table 1), which showed

significantly more potency on neutralization than its

unsulfated form (36). The specific electrostatic interactions

were made between cationic residues of gp120 and sTyr at

antibody PG9, as the Tyr sulfate provides a closer match than

the standard acidic Asp and Glu side chains (37).

CAP256-VRC26.25 (Figure 2A and Table 1), one of the most

potent antibodies targeting V1V2 apex of gp120, contains two

sTyr in CDRH3 (43), and uses an extended CDRH3 loop to

insert sTyr into the hole at the V1V2 apex. One recent study (47)

further indicates that an increased level of Tyr sulfation on this

anti-HIV-1 antibody corresponded to more robust antigen

binding to the V1V2 domain of gp120 protein. Molecular

binding efficacy dropped significantly with a loss of only one

sulfo group. Without the sulfation, nearly no binding was

detectable. Full sulfation occupancy in the antibody CDRH3 is

important for effective high antigen binding and should be

regarded as a critical quality attribute for this antibody (47).

Several recent reports provide other examples of Tyr sulfated

antibody at the varied CDRs. Different from the modification

sites in CDRH3 for anti-HIV-1 antibodies, the Tyr sulfation sites

located in the short CDRL1 region (40) or CDRL2 (41) have

been recently discovered (Figure 2B and Table 1). One human

antibody produced by stable CHO cells was 40% Tyr-sulfated at

its LC CDR1 region (40). The modified Tyr residue (Y31) is

surrounded with Glu or Asp residue at -1, +1, +3, +5, supporting

its being a substrate for TPSTs. This is the first example in which

Tyr-sulfation is on an antibody’s CDRL1 region. During the

immunoglobulin rearrangement, CDRL1 contains only V gene

fragments. In human germline V-segment loci, there are 51 VH

and 70 Vk/l (83). Therefore it is much less diverse than CDRL3

(with additional J fragment recombination) or CDRH3 (with
TABLE 1 Summary for sequences and sTyr residues at antibody CDRs.

Antibodies Amino acid sequences CDRs References

412d .PYPNDYNDYAPEEGMSWYFDLW(103). CDRH3 (29, 34)

E51 IAGVAAAGDYADYDGGYYYDMDVW(103). CDRH3 (29, 34)

PG9 EAGGPDYRNGYNYYDFYDGYYNYHYMDVW(103). CDRH3 (36)

PG16 EAGGPIWHDDVKYYDFNDGYYNYHYMDVW(103). CDRH3 (36)

PGT145 HRLRDYFLYNEYGPNYEEWGDYLATLDVW(103). CDRH3 (37)

2909 DKGDSDYDYNLGYSYFYYMDGW(103). CDRH3 (37)

CAP256.03 EEWWSDYYDFGKQLPCRKSRG-VAGIFDGW(103). CDRH3 (81)

CAP256.25 EEWWSDYYDFGKQLPCAKSRGGLVGIADNW(103). CDRH3 (81)

Human mAb-Merck XSXSXDYEGDSD(36)XXXXXXX. CDRL1 (40)

Human IgG1mAb1-Roche LIYSASDLDYGVPSR(62). CDRL2 (41)
fr
Amino acid sequences and sTyr residues at CDRH3 (26, 29, 34, 36, 37, 81), CDRL1 (40), and CDRL2 (41) are listed. Sulfated Tyr residues are in bold and underlined.
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additional D or J recombination). The biological function of this

sTyr is not disclosed in the paper (40), but the fact that this

modification was intentionally preserved during stable CHO

production suggested its possibly important role in antigen

binding (45).

Tyshchuk and colleagues reported that a human IgG1

expressed in stable CHO cells was 21% Tyr-sulfated at its LC

CDR-2 region (Figure 2B and Table 1) (41). The sTyr residue

(Y57) is nearby with Asp residue at -1 and -3 position whereas a

similar antibody with unsulfated Tyr has a Thr residue at -3

position, supporting the important role of acidic residue on

amino-terminal site of Tyr for sulfation. Even though this sTyr is

not essential for antigen binding (41), one would expect to see

more functional examples of sTyr in antibody CDRs being

uncovered, as the functional role of sTyr catches a

wider attention.
Implication of sTyr in
antibody engineering

sTyr extends the vocabulary of protein synthesis beyond the

standard 20 amino acids (26, 34). It has an important implication

in antibody engineering for protein-protein interaction, especially

under the fact that Tyr-sulfation is not a rare event, estimated to

be ~7% of mammalian proteins and ~1% of all Tyr residues in the

eukaryotic proteome (22, 25, 74, 84). sTyr heightens protein-

protein interactions via two mechanisms. The first one is that
Frontiers in Immunology 05
Tyr’s aromatic ring engages nonpolar and pi stacking interactions

with various binding residues. The second one is that the sulfate

group can make electrostatic interactions with positive-charged

Arg or Lys residues on the surface of the binding partner. For

instance, replacing the sTyr12-interacting-Lys27 of chemokine

CXCL12 with Ala or Glu resulted in 3.9- and 181.7-fold

reduction in CXCR4 receptor activation respectively (85).

One advantage of sTyr is that its sulfate ester is anionic at

physiological pH, providing an electrostatic component to

specific interaction without acting as a base or nucleophile.

Tyr sulfate also provides a longer electrostatic arm than the

standard acidic Asp and Glu side chains. Sulfate esters are often

found in clusters which is an efficient way of generating unique

structures to increase interaction affinity. Another advantage of

sTyr is that the sulfate ester is stable in physiological conditions.

Other than the sulfatases for steroids or carbohydrates (86), no

sulfoprotein sulfatase is yet reported for mammalian cells and

tissues. sTyr is therefore considered as a long-lasting PTM.

With a nearly identical mass, sTyr and phospho-Tyr (pTyr)

has been compared both biologically and biophysically

(Figure 1C). Both the sulfate group and the phosphate group

are PTMs with the addition of an oxoanion functional group (27,

87). Both groups are fully ionized at neutral pH and can increase

side-chain polarity. Comparing to pTyr, sTyr makes weaker

hydrogen bonds, attributed to the reduced electrostatic

potentials (-1 for sTyr vs -2 for pTyr) and smaller dipole

moment (27). sTyr sulfate can create distinct ionic contact (88,

89) and provide a unique interaction specificity, even though for
A B

FIGURE 2

Three types of Tyr sulfation modification at antibody CDRs. (A) Structural display of sTyr residues at CDRH3 of anti-HIV-1 antibody CAP256-
VRC26.25 (Gorman, Chuang et al. 2020). PDB 5DT1 (47, 81). (B) sTyr residues at CDRL1 (Y31) (40) and CDRL2 (Y57) (41) are displayed on
antibody Fab structure (Fv of Fab388). Sulfated tyrosine residues were modeled on the corresponding Fab structure PDB 5I1A (14, 82) using
Pymol molecular graphics v2.5.4.
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some protein-protein-interactions pTyr can partially replace

sTyr (90–92). There are cases that pTyr cannot substitute sTyr

(93). For CCR7 signaling with CCL21, pTyr can only replace

sTyr at position 8 of CCR7 but at postion17 sTyr provides a

drastic effect over pTyr (92).

From a protein engineering point of view, sTyr interactions

with Arg are weaker significantly than that of pTyr, and even not

the same interactions made by the Glu residue. However, sTyr

has a greater flexibility than pTyr, attributing to a weaker

hydrogen bonding interaction. It provides a unique interaction

specificity determinant, as in the example that phosphate can’t

replace sulfate for interacting with Lys145 of CCR5 (34). Many

secreted proteins contain basic patches on their protein surfaces.

Charge-charge interaction between sulfate group and Lys/Arg

residues on these proteins might provide a way of affinity up-

regulation for Tyr-sulfated antibodies. This mechanism might

have been utilized by human antibody repertoire for targeting

this kind of antigen.

As a known player for protein-protein interaction, sTyr

usually mediates the interactions through relatively short

protein segments, e.g., amino-termini of cell surface proteins

and receptors. This feature fits ideally with the length of the CDR

loops in antibodies, even though not all sTyr are important for

protein-interaction, with some being detrimental (28).

Interestingly, even a peptide derived from the Tyr-sulfated

CDRH3 of E51 antibody is sufficient to engage with virus

spike protein and neutralize virus isolates (94, 95). Recently

Siguna Mueller wrote an article on rarely-recognized antibody

diversification against SARS-CoV and SAR-CoV-2 with a

potential role of sulfated antibodies (96), as the basic residue

stretches on the surface of the viral spike protein (97) can be

targeted by the negatively-charged Tyr-sulfate. More novel

examples in protein engineering with sTyr are expected to

appear in the literatures.
Clinical development and manufacturing
of sTyr-containing antibodies

Several sTyr-containing antibodies such as PG9, PG16, and

CAP256-VCR26 have entered clinical trials or preclinical stages

as broadly neutralizing antibodies for the treatment and

prevention of HIV infection (98–100). These sTyr-containing

antibodies have been successfully produced by stable CHO cells

(45, 47) or in plants (38, 44).

A major challenge for Tyr sulfation is the difficulty of

expressing target proteins in a homogenously sulfated state.

Chemical synthetic approaches have been developed for

peptide synthesis, but not for large proteins (101). The genetic

code expansion technology (Figure 1D) utilizes an engineered

tyrosyl-tRNA synthetase/tRNA pair that co-translationally

incorporates sTyr into the UAG codons in bacterial (102) and

mammalian cells (103, 104). These new methods provide a
Frontiers in Immunology 06
promising way to incorporate sTyr into proteins site-

specifically for evaluating the roles of individual sulfations.

Sulfated antibodies have been routinely produced by

mammalian cells, even though different sulfation levels were

observed (37, 45). This is likely due to different gene expression

in sulfation pathway like those of TPSTs, which can be rescued

by TPST overexpression. Ectopic expression of either TPST1 or

TPST2 can result in a high percentage of Tyr-sulfated antibodies,

yet producing a full Tyr-sulfation occupancy on modified sites

remains to be a challenging task (47).

Plant-based expression system has been employed for cost-

effective antibody production (38, 44, 46). Plants encode a single

TPST with a carboxyl-terminal transmembrane domain which is

different from the amino-terminal segment for human TPSTs

(Figure 1B) (26, 105). Plant TPST has putative 5’-PSB ad 3’-PB

motifs even though the similarity with human counterparts is low.

It shares additional carboxyl-terminal sequence similarity with

heparan sulfate 6-O-sulfotransferase (105). Initial sulfo-antibody

expression in plant did not produce detectable sTyr, indicating that

mammalian-type of sulfation does not naturally occur in plant (38,

39). When human TPST1 was engineered in plants, a plant Golgi-

targeting sequence was needed for targeting the enzyme to late

Golgi compartment (38). A drastic improvement for Tyr sulfation

was subsequently observed. Several sTyr-containing antibodies have

been produced successfully by this engineered plant-based system

for anti-viral therapy (44, 44, 46).
Challenges and perspectives

PTMs like Tyr sulfation in mammalian cells provide de novo

synthesized proteins with additional level of structural diversity

beyond their primary sequences. These PTMs impose new

biological functions and activity modulations as well as further

physiological consequences. For Tyr sulfation modification, it

results in versatile interaction motifs that are critical for

numerous high-affinity physiological interactions. It is fascinating

that sTyr also has a role in regulating humoral immune responses

and contributing to the extent of the antibody diversification as first

uncovered nearly two decades ago. This PTM has provided a new

strategy for therapeutic antibody engineering and diversification.

However, there are still significant challenges being

presented to Tyr sulfation. Specificity determinants for Tyr

sulfation remain to be well defined. Better understanding how

TPSTs engage with their substrates is essential for evaluating the

location and function of sTyr at CDRs. Moreover, feasible and

reliable analytical methods for detecting sTyr are needed for

understanding many under-documented protein substrates in

protein database. Elucidating the biological mechanisms for

these newly identified sulfoproteins are challenging, whereas

accumulating these physiological knowledges is important for

designing new sTyr-containing antibodies and therapeutic

proteins. For instance, three sTyr residues (Y46, Y48 & Y51)
frontiersin.org
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of P-selectin glycoprotein ligand-1 (PSGL-1) make ionic

interactions with protonated His residues (H154, H153, &

H100) of the PSGL-1 ligand VISTA in acidic tumor

microenvironments, which is disrupted by the imidazole

sidechain deprotonation at the physiological pH7.4 (106). This

finding reveals a novel role of sulfation in a pH-selective binding

interaction for future protein engineering design.

Developing new technologies in producing site-specific

sulfo-antibodies is helpful in determining the structure-

function relationship. While the genetic codon expanding

technology is promising, its bioprocessing bottlenecks need to

be overcome for a large-scale production. In addition, producing

sTyr-containing secreted full-length intact antibody proteins

with this methodology remains to be demonstrated. Further

understanding of sTyr as a critical drug product attribute is also

warranted for sulfo-biotherapeutics. sTyr is known to work

together with N- or O-glycans (24), which are also present at

CDRs for enhancing antigen binding (107, 108). With more

knowledge being gathered for the roles of these PTMs at CDRs,

one expects molecular insights and mechanisms of these

unconventional strategies for antibody diversification will be

further revealed.
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