138 research outputs found
Deep Interest Evolution Network for Click-Through Rate Prediction
Click-through rate~(CTR) prediction, whose goal is to estimate the
probability of the user clicks, has become one of the core tasks in advertising
systems. For CTR prediction model, it is necessary to capture the latent user
interest behind the user behavior data. Besides, considering the changing of
the external environment and the internal cognition, user interest evolves over
time dynamically. There are several CTR prediction methods for interest
modeling, while most of them regard the representation of behavior as the
interest directly, and lack specially modeling for latent interest behind the
concrete behavior. Moreover, few work consider the changing trend of interest.
In this paper, we propose a novel model, named Deep Interest Evolution
Network~(DIEN), for CTR prediction. Specifically, we design interest extractor
layer to capture temporal interests from history behavior sequence. At this
layer, we introduce an auxiliary loss to supervise interest extracting at each
step. As user interests are diverse, especially in the e-commerce system, we
propose interest evolving layer to capture interest evolving process that is
relative to the target item. At interest evolving layer, attention mechanism is
embedded into the sequential structure novelly, and the effects of relative
interests are strengthened during interest evolution. In the experiments on
both public and industrial datasets, DIEN significantly outperforms the
state-of-the-art solutions. Notably, DIEN has been deployed in the display
advertisement system of Taobao, and obtained 20.7\% improvement on CTR.Comment: 9 pages. Accepted by AAAI 201
An Array-Type System Applied to Complex Surfaces in Nuclear Pollution Detection
[EN] Radioactive pollution detection plays a key role in nuclear technology application. In this paper, an array-type of nuclear pollution detection system is designed for the detection scenario of complex surfaces. Firstly, to get the three-dimensional point cloud of the surface, a complex surface was modeled based on the geometric ranging model of a two-dimensional laser profilometer and the motion model of a two-degree-of-freedom displacement platform. Secondly, an 'S' type scanning scheme of profilometer was developed to overcome the problem of limited scanning area of the profilometer. Thirdly, Euclidean distance weighted median filtering was used to solve the impulsive noise that may occur during the point cloud acquisition process. Finally, the 3D point cloud information of the complex surface was used for controlling the movement of the 6 x 6 array channel pollution detector to complete the alpha and beta particle measurement tasks. A mechanical platform was constructed for experiments, the results are as follows. The working range of this system is from -5 cm to 5 cm in elevation difference of surfaces, and the accuracy is 12 mu m in surface height measuring. It takes 26.13 s to perform a detection task including surface scanning and the detector moving, and scanning accuracy is 0.35 x 0.35 mm(2). The maximum control error of the surface contamination detector is 0.4 mm. Specifically, the detection area of the system reaches 240 x 240 mm(2). The results show that the system acquires three-dimensional terrain information, and realizes control over the movement of the pollution detector accurately and then completes the detection of alpha and beta particles effectively.This work is supported by National Natural Science Foundation (NSFC) of China under Grant
No.61601382, Sichuan Provincial Science and Technology Support Project No.2019YJ0325, the Doctoral Fund of
Southwest University of Science and Technology No.16zx7148, No.19zx7123, Longshan academic talent research
supporting program of SWUST No.18LZX632 and the Fund of Robot Technology Used for Special Environment
Key Laboratory of Sichuan Province No.13zxtk08.Chu, H.; Chang, Z.; Shao, Y.; Zhang, X.; Lloret, J. (2020). An Array-Type System Applied to Complex Surfaces in Nuclear Pollution Detection. Electronics. 9(11):1-21. https://doi.org/10.3390/electronics9111870S12191
Private and Flexible Urban Message Delivery
With the popularity of intelligent mobile devices, enormous amounts of urban information has been generated and demanded by the public. In response, ShanghaiGrid (SG) aims to provide abundant information services to the public. With a fixed schedule and urbanwide coverage, an appealing service in SG is to provide free message delivery service to the public using buses, which allows mobile device users to send messages to locations of interest via buses. The main challenge in realizing this service is to provide an efficient routing scheme with privacy preservation under a highly dynamic urban traffic condition. In this paper, we present the innovative scheme BusCast to tackle this problem. In BusCast, buses can pick up and forward personal messages to their destination locations in a store-carry-forward fashion. For each message, BusCast conservatively associates a routing graph rather than a fixed routing path with the message to adapt the dynamic of urban traffic. Meanwhile, the privacy information about the user and the message destination is concealed from both intermediate relay buses and outside adversaries. Both rigorous privacy analysis and extensive trace-driven simulations demonstrate the efficacy of the BusCast scheme
Overvoltage risk regulation strategy with distributed energy application in a distribution network based on the Stackelberg game
Along with the increasing low-carbon demand of the power system, the access of a high percentage of renewable energy resources to the distribution network has a large impact on the voltage fluctuation of the system and reduces the operational reliability. In this paper, we consider utilizing the reactive capacity of distributed resources to participate in system voltage regulation to reduce node loss of load probability (LOLP) caused by node overvoltage faults and propose an overvoltage risk regulation strategy for the interaction between distribution network operators (DSOs) and distributed users in the framework of the Stackelberg game. First, the nodes are clustered and analyzed based on the two-dimensional indexes of node voltage regulation ability, and different voltage regulation compensation tariffs are assigned. Second, the cost-benefit model of voltage regulation for the leader and follower sides and the node LOLP model are constructed to measure the reliability of the system. The Stackelberg game is used to co-optimize the two parties’ compensation tariffs and voltage regulation strategies. The optimal solution of voltage regulation under the equilibrium of the game is obtained by solving using the particle swarm optimization (PSO) algorithm. Based on the IEEE-33 node system, a case study is carried out to verify that the proposed overvoltage risk regulation strategy can maximize the benefits of the regulator participants while enhancing the operational reliability of the system
High Fat Diet Induces Formation of Spontaneous Liposarcoma in Mouse Adipose Tissue with Overexpression of Interleukin 22
Interleukin 22 (IL-22) is a T-cell secreted cytokine that modulates inflammatory response in nonhematopoietic tissues such as epithelium and liver. The function of IL-22 in adipose tissue is currently unknown. We generated a transgenic mouse model with overexpression of IL-22 specifically in adipose tissue. The IL-22 transgenic mice had no apparent changes in obesity and insulin resistance after feeding with high fat diet (HFD). Unexpectedly, all the IL-22 transgenic mice fed with HFD for four months developed spontaneous tumors in epididymal adipose tissue. Histological analysis indicated that the tumors were well-differentiated liposarcomas with infiltration of inflammatory cells. IL-22 overexpression promotes production of inflammatory cytokines such as IL-1β and IL-10 and stimulates ERK phosphorylation in adipose tissue. Furthermore, IL-22 treatment in differentiated 3T3-L1 adipocytes could induce IL-1β and IL-10 expression, together with stimulation of ERK phosphorylation. Taken together, our study not only established a novel mouse model with spontaneous liposarcoma, but also revealed that IL-22 overexpression may collaborate with diet-induced obesity to impact on tumor development in mouse
Chronic kidney disease and valvular heart disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies conference
Chronic kidney disease (CKD) is a major risk factor for valvular heart disease (VHD). Mitral annular and aortic valve calcifications are highly prevalent in CKD patients and commonly lead to valvular stenosis and regurgitation, as well as complications including conduction system abnormalities and endocarditis. VHD, especially mitral regurgitation and aortic stenosis, is associated with significantly reduced survival among CKD patients. Knowledge related to VHD in the general population is not always applicable to CKD patients because the pathophysiology may be different, and CKD patients have a high prevalence of comorbid conditions and elevated risk for periprocedural complications and mortality. This Kidney Disease: Improving Global Outcomes (KDIGO) review of CKD and VHD seeks to improve understanding of the epidemiology, pathophysiology, diagnosis, and treatment of VHD in CKD by summarizing knowledge gaps, areas of controversy, and priorities for research
PGC-1α Inhibits Oleic Acid Induced Proliferation and Migration of Rat Vascular Smooth Muscle Cells
BACKGROUND: Oleic acid (OA) stimulates vascular smooth muscle cell (VSMC) proliferation and migration. The precise mechanism is still unclear. We sought to investigate the effects of peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1 alpha (PGC-1alpha) on OA-induced VSMC proliferation and migration. PRINCIPAL FINDINGS: Oleate and palmitate, the most abundant monounsaturated fatty acid and saturated fatty acid in plasma, respectively, differently affect the mRNA and protein levels of PGC-1alpha in VSMCs. OA treatment resulted in a reduction of PGC-1alpha expression, which may be responsible for the increase in VSMC proliferation and migration caused by this fatty acid. In fact, overexpression of PGC-1alpha prevented OA-induced VSMC proliferation and migration while suppression of PGC-1alpha by siRNA enhanced the effects of OA. In contrast, palmitic acid (PA) treatment led to opposite effects. This saturated fatty acid induced PGC-1alpha expression and prevented OA-induced VSMC proliferation and migration. Mechanistic study demonstrated that the effects of PGC-1alpha on VSMC proliferation and migration result from its capacity to prevent ERK phosphorylation. CONCLUSIONS: OA and PA regulate PGC-1alpha expression in VSMCs differentially. OA stimulates VSMC proliferation and migration via suppression of PGC-1alpha expression while PA reverses the effects of OA by inducing PGC-1alpha expression. Upregulation of PGC-1alpha in VSMCs provides a potential novel strategy in preventing atherosclerosis
- …