97 research outputs found

    Hyperglycemia Altered the Fate of Cardiac Stem Cells to Adipogenesis through Inhibiting the β-Catenin/TCF-4 Pathway

    Get PDF
    Background/Aims: Hyperglycemia is an important risk factor for the most severe cardiovascular diseases in patients with diabetes. It has been demonstrated that cardiac stem cells (CSCs) play a pivotal role in the maintenance of cardiac homeostasis and regeneration. However, the mechanism underlying the influence of diabetes on CSCs remains unclear. This study demonstrated that hyperglycemia might promote adipogenesis in CSCs, which induces a decline in myocardial regeneration capability in diabetes. Methods: CSCs were isolated and cultured in high-glucose medium. The levels of β-catenin and TCF-4 in CSCs were determined by immunofluorescence staining and western blot analysis. Adipogenic transcriptional factors and CSCs markers were also examined by flow cytometry and western blot analysis after adipogenesis induction. In addition, Oil Red O staining was performed to investigate lipid droplet formation during adipogenesis induction with or without LiCl, a potent activator of TCF/β-catenin-dependent transcription. Results: High-glucose conditions inhibited nuclear translocation of β-catenin/TCF-4 and promoted adipogenesis in CSCs. After adipogenesis induction, expression of adipogenic transcriptional factors (PPARγ, ADD1, and C/EBPα) were increased (P < 0.01) and that of CSCs markers (c-Kit, Sca-1, MDR-1, and isl-1) were decreased (P< 0.01) in CSCs in the high-glucose group. Furthermore, lipid droplet formation was increased in CSCs cultured with high glucose, while LiCl attenuated lipid droplet formation in these CSCs (P < 0.01). Conclusion: These results demonstrated that hyperglycemia inhibited the β-catenin/TCF-4 pathway and promoted CSCs adipogenesis. Our findings suggest a new opportunity for future interventional strategie for abnormal myocardial regeneration and epicardial fat in patients with diabetes

    Evaluation of a novel saliva-based epidermal growth factor receptor mutation detection for lung cancer: A pilot study.

    Get PDF
    BackgroundThis article describes a pilot study evaluating a novel liquid biopsy system for non-small cell lung cancer (NSCLC) patients. The electric field-induced release and measurement (EFIRM) method utilizes an electrochemical biosensor for detecting oncogenic mutations in biofluids.MethodsSaliva and plasma of 17 patients were collected from three cancer centers prior to and after surgical resection. The EFIRM method was then applied to the collected samples to assay for exon 19 deletion and p.L858 mutations. EFIRM results were compared with cobas results of exon 19 deletion and p.L858 mutation detection in cancer tissues.ResultsThe EFIRM method was found to detect exon 19 deletion with an area under the curve (AUC) of 1.0 in both saliva and plasma samples in lung cancer patients. For L858R mutation detection, the AUC of saliva was 1.0, while the AUC of plasma was 0.98. Strong correlations were also found between presurgery and post-surgery samples for both saliva (0.86 for exon 19 and 0.98 for L858R) and plasma (0.73 for exon 19 and 0.94 for L858R).ConclusionOur study demonstrates the feasibility of utilizing EFIRM to rapidly, non-invasively, and conveniently detect epidermal growth factor receptor mutations in the saliva of patients with NSCLC, with results corresponding perfectly with the results of cobas tissue genotyping

    Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign

    Get PDF
    The optical properties and chemical composition of PM1.0 particles in a suburban environment (Huairou) near the megacity of Beijing were measured during the HOPE-J3A (Haze Observation Project Especially for Jing–Jin–Ji Area) field campaign. The campaign covered the period November 2014 to January 2015 during the winter coal heating season. The average values and standard deviations of the extinction, scattering, absorption coefficients, and the aerosol single scattering albedo (SSA) at λ = 470 nm during the measurement period were 201 ± 240, 164 ± 202, 37 ± 43 Mm−1, and 0.80 ± 0.08, respectively. The average values for the real and imaginary components of the effective complex refractive index (CRI) over the campaign were 1.40 ± 0.06 and 0.03 ± 0.02, while the average mass scattering and absorption efficiencies (MSEs and MAEs) of PM1.0 were 3.6 and 0.7 m2 g−1, respectively. Highly time-resolved air pollution episodes clearly show the dramatic evolution of the PM1.0 size distribution, extensive optical properties (extinction, scattering, and absorption coefficients), and intensive optical properties (SSA and CRI) during haze formation, development, and decline. Time periods were classified into three different pollution levels (clear, slightly polluted, and polluted) for further analysis. It was found that (1) the relative contributions of organic and inorganic species to observed aerosol composition changed significantly from clear to polluted days: the organic mass fraction decreased from 50 to 43 % while the proportion of sulfates, nitrates, and ammonium increased strongly from 34 to 44 %. (2) Chemical apportionment of extinction, calculated using the IMPROVE algorithm, tended to underestimate the extinction compared to measurements. Agreement with measurements was improved by modifying the parameters to account for enhanced absorption by elemental carbon (EC). Organic mass was the largest contributor (52 %) to the total extinction of PM1.0, while EC, despite its low mass concentration of ∼ 4 %, contributed about 17 % to extinction. When the air quality deteriorated, the contribution of nitrate aerosol increased significantly (from 15 % on clear days to 22 % on polluted days). (3) Under polluted conditions, the average MAEs of EC were up to 4 times as large as the reference MAE value for freshly generated black carbon (BC). The temporal pattern of MAE values was similar to that of the OC / EC ratio, suggesting that non-BC absorption from secondary organic aerosol also contributes to particle absorption

    Les modèles graphiques

    No full text
    • …
    corecore