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ABSTRACT

Intelligent learning environments require fine grained assessment of the user’s knowl-
edge state. Models of the users knowledge are necessary for applications such as
student study guides (Khuwaja, Desmarais, & Cheng, 1996a), adaptive hypertext
and intelligent textbooks (Schwarz, Brusilovsky, & Weber, 1996), or intelligent tu-
toring systems (Mayo & Mitrovic, 2001; VanLehn, Lynch, Schulze, Shapiro, Shelby,
Taylor, Treacy, Weinstein, & Wintersgill, 2005).

A large body of research has been devoted to building models for assessing knowl-
edge efficiently. The psychometric field is the earliest to tackle this problem. In
particular, the Item Response Theory (IRT) is a classic approach to skill modeling
introduced over four decades ago. It has been applied to what is probably the ear-
liest computer adaptive interface: Computer Adaptive Testing (CAT). In the last
decade, the user modeling and intelligent learning environment fields have cast in-
terest in the use of graphical probabilistics models and Bayesian networks to address
skill assessment. These techniques offer the advantage of producing very fine grained
assessment not typically available with psychometric techniques such as IRT. How-
ever, probabilistic graph models can be more complex to build and calibrate than
IRT.

A probabilistic network approach, named POKS (Desmarais, Maluf, & Liu, 1996;
Desmarais & Pu, 2005a, 2005b; Desmarais, Fu, & Pu, 2005), was developed to provide
a fine grained assessment while providing a simpler framework than Bayesian network
(BN). Not only is the computational complexity simpler, it also allows the model
calibration with fewer data cases. However, it makes strong assumptions which can
be violated and lead to inaccuracies and it remains an empirical question to determine

the extent of the potential assumptions violation on its performance.
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This study is part of a wider research program to better assess the strength and
weaknesses of POKS in comparison with other approaches. It focuses on the compar-
ison of POKS with IRT. The comparison was performed over two simulation studies
and within the CAT framework, since this is what IRT was designed for. The first
simulation is based on a 34 items test on the knowledge of the UNIX shell commands
and the second simulation is based on a 160 items French language test. In both
cases, the simulation consists in choosing the most informative item based on the
Fisher information and the information gain criteria, and feeding the actual answer
to the knowledge assessment technique. The result is then compared with the actual
answers and the process is repeated from the first to the last test item and for each
subject.

Experimental results show that both approaches can classify examinees as master
or non master effectively and efficiently, with relatively comparable performance.
However, more significant differences are found for a second task that consists in
predicting individual question item outcome. Implications of these results for adaptive
testing and student modeling are discussed, as well as the limitations and advantages
of POKS, namely the issue of integrating concepts into its structure.

As intelligent learning environments evolve and become more popular, knowledge

assessment models and techniques will become more pervasive.

Keywords: Student modeling, CAT, Bayesian modeling, POKS, IRT



CONDENSE EN FRANCAIS

Introduction

Les environnements d’apprentissage intelligents visent & adapter le contenu présenté
en fonction des besoins individuels de 'étudiant et de son niveau actuel de connais-
sances.

Un modeéle étudiant est un composant essentiel de ces applications. Le modele
étudiant établit et maintient une information a jour, notamment ses intéréts, ses
buts et, bien entendu, son niveau de connaissance, aunquel nous référerons par ses
compétences. Les informations fournies par le modele d’étudiant sont employées pour
guider les systémes d’apprentissage et répondre d’une maniere adaptative.

Les environnements intelligents d’apprentissage exigent souvent du modele étudiant
un niveau détaillé de I’état de la connaissance. Il importe donc de développer des
techniques permettant d’établir un tel diagnostic de fagon rapide et fiable.

Les tests adaptatifs (TA, ou “Computer Adaptive Testing” en anglais) sont pro-
bablement les premiers exemples d’environnements adaptatifs d’apprentissage. Le
principe derriere un TA est d’ajuster les questions & la connaissance du candidat en
tenant compte des réponses aux questions précédentes. 1l s’agit d’une boucle qui, en
la simplifiant & deux étapes, consiste & évaluer la connaissance de I’étudiant puis a
choisir et a présenter la question la plus appropriée en fonction du succes ou de ’échec
a cet item, boucle que ’'on nomme souvent la boucle TA.

La théorie originale derriere le TA est celle de la réponse aux items (TRI), for-
malisée il y a déja quatre décennies. Plus récemment, différentes approaches bayésiennes
ont été également appliquées pour modéliser les compétences d’'un candidat & partir

de ses réponses a des items.
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Cette étude se concentre sur le lien entre les deux champs, d’un c6té le TRI et de
Pautre les techniques de modélisation bayésienne de 'étudiant, le dernier étant un des
principales techniques utilisées pour créer des modeles utilisateurs. Nous décrivons
chaque approche et effectuons une évaluation comparative des performances entre la
TRI et une approche de modélisation bayésienne nommée POKS (Desmarais et al.,

1996).

Concepts de base

La TRI est l'approche la plus répandue pour effectuer des tests adaptatifs. Dans
le contexte du TA, la TRI modélise le lien entre les compétences du candidat et la
probabilité de succes & une réponse donnée. Ce lien correspond a ce que ’'on nomme
la courbe caractéristique de l'article (ICC).

L’un des modeles d’ICC les plus largement répandus est le modele logistique &
deux-paramétre (2-PL). Ce modele possede des propriétés mathématiques fort utiles
d’un point de vue pratique. Une fois les parametres de la courbe ICC déterminés
pour tous les items d’un test, il devient possible de dériver le niveau le plus pro-
bable des compétences du candidat & partir d’'un ensemble donné de réponses & des
items. Typiquement, les compétences sont estimées avec une méthode de maximum
de vraisemblance, mais un certain nombre de méthodes ont été proposées et étudiées
pour cette fin.

D’autre part, la modélisation bayésienne fournit un cadre mathématique alternatif
par lequel nous pouvons calculer la probabilité d’un certain événement étant donné
Poccurrence d’un ensemble d’un ou plusieurs autres événements. La méthode la plus
directe est fondées sur la table compléte des probabilité conditionunelle conjointes,

mais elle s’avere impraticable dans la plupart des cas a cause du tres grand nombre
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de données nécessaires pour calibrer de telles tables. Il existe un certain nombre de
techniques pour contourner ce probleme. Ces moyens varient selon leurs hypotheéses ou
selon les contraintes qu’ils imposent aux probabilités conditionnelles dans un modéle.

Les modeles de graphes bayésiens et, en particulier, le cadre des réseaux bayésiens
(BN), sont parmi les approches les plus répandues pour la modélisation bayésienne.
Ils permettent de modéliser uniquement des probabilités conditionnelles appropriées
et reposent sur un cadre mathématique solide pour la mise a jour les probabilités
basée sur 'occurrence d’un événement dans le réseau. En outre, l'identification de
la structure des probabilités conditionnelles, la topologie du réseau elle-méme, peut
étre dérivée des données empiriques. Nous révisons différentes techniques de graphes

bayésiennes dans cette étude, notamment ’approche POKS.

Théorie de la réponse aux items (TRI)

La théorie de réponse aux items est une approche classique pour le modele de I’étudiant.
Elle a été employée dans des applications de TA depuis plusieurs décennies.

La courbe caractéristique d'un item (Item Characteristic Curve, ICC) décrit le
rapport entre la chance de succeés d’un candidat & un item de test donné et son
niveau de compétences. Deux familles des fonctions mathématiques sont généralement
employées pour qualifier 'ICC : le modéle normal (normal ogive model) et le modele
logistique.

Le modele normal est basé sur I'observation empirique que la distribution des
compétences d’individus suit une une courbe normale. Beaucoup de chercheurs ont
justifié I'utilisation du modele normal d’ICC sur cette base pragmatique et la pratique
au cours des années démontre la justesse de celui-ci. Le modéle normal original prend

deux parametres, a et b, qui sont respectivement le facteur de discrimination de 'item



et son degré de difficulté.

La fonction logistique est une trés proche approximation de la distribution nor-
male. En outre, elle posséde des avantages mathématiques qui facilitent grandement
le calcul par rapport au modele normal lors de l'estimation de la compétence d'un
individu. Par conséquent, le modele logistique de 'ICC est maintenant plus sou-
vent employé dans la pratique. Le modele logistique et le modele normal partagent
les mémes parametres et leurs valeurs sont interchangeables, moyennant un facteur
multiplicatif. En plus des parameétres a et b, un troisieme parametre représentant la
chance, ¢, est utilisé et se nomme le modele logistique & trois parametres (3-PL).

Par définition, des modeles I’ICC (normal et logistique) stipulent que la prob-
abilité de succeés & un item donné est indépendante de son succes aux autres items
étant donné son niveau de compétence. Ce principe peut étre énoncé comme une
indépendance locale entre les items individuels dans un test. C’est ce que I’on nomme
I’hypothese de I'indépendance locale dans la TRI et qui stipule I'indépendance con-
ditionnelle entre les items.

Sous I’hypothése de 'indépendance locale, la probabilité d’un ensemble de réponses
& des items étant donné un niveau donné de compétence se définit comme un sim-
ple produit des probabilités conditionnelles individuelles. Par l'intermédiaire de la
technique de I’évaluation de maximum de la vraisemblance (Mazimum Likelihood Es-
timation, MLE), il est alors possible de trouver la compétence du candidat ou les
parametres a et b les plus probables en fonction d’un échantillon de réponses aux
items. Du point de vue mathématique, 'évaluation de maximum de vraisemblance
correspond a un processus de calcul de racines. Les approches basées sur la méthode
de Newton-Raphson sont habituellement des solutions applicables dans ce contexte.
De la perspective du modele d’étudiant, I’évaluation des parametres des items con-

stitue la solution a la création du modéle.
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Une implantation du modele TRI a été réalisé pour la présente étude basé sur le

modele logistique & deux parameétres (discrimination et difficulté).

Ordres partiels de connaissances (Partial Order Knowledge

Structure, POKS)

L’ordre partiel de la connaissance (Partial Order Knowledge Structure, POKS, Des-
marais et al, 1996) est une approche de modélisation bayésienne qui repose sur
plusieurs hypothéses fortes pour réduire la complexité dans la modélisation bayésienne.
L’approche POKS permet la modélisation bayésienne de la structure de la connais-
sance en créant des liens entre les items d’un test, en accord avec la théorie de ’espace
de la connaissance (Knowledge Spaces, Falmagne et al., 1990). Un des buts de cette
étude est d’explorer la validité de la méthode POKS pour modéliser et prédire la
compétence malgré la simplicité du modele bayésien utilisé.

Le réseau POKS ne contient que des items et aucun noeud concepts n’est inclus.
Imposer cette regle facilite 'inférence de la structure POKS et élimine tout effort
d’ingénierie humaine pour construire le réseau. Le recours a Papprentissage & partir
de données rend ainsi 'approche plus comparable & la TRI par rapport aux autres
approches de modélisation bayésiennes qui exigeraient une étape d’ingénierie de la
connaissance. Les mémes données peuvent étre employées pour les approches de la
POKS et la TRI sans aucune manipulation ou transformation, permettant de ce fait
une comparaison des deux approches sur une base égale.

L’algorithme d’induction du réseau POKS se fonde sur une analyse par paire
des items entre eux. Une telle analyse permet d’identifier 'ordre dans lequel les
personnes maitrisent les items de connaissance. Elle est inspirée de la théorie des

espaces de la connaissance qui déclare que Pordre d’acquisition de compétence peut



xii

étre modélisé par un graphe ET/OU. Pour notre fin, nous imposons une plus forte
hypothese dans lequel l'ordre d’acquisition de compétence peut étre modélisé par
un graphique acyclique dirigé (Directed Acyclic Graph, DAG), ou “ordre partiel”.
Cette hypothése nous permet de limiter ’algorithme de Pinduction du réseau POKS
a Panalyse par paire uniquement. 11 8’agit ici d’une autre forme d’indépendance locale
présumée entre les items de connaissance.

Etant donné de I’hypothese d’indépendance de POKS, la mise a jour de proba-
bilité a partir de I'observation d’une nouvelle évidence (une réponse & un item) peut
étre réalisée par un calcul de probabilité postérieures simple. Ceci permet POKS
d’employer le théoreme de Bayes et nous 'utilisons dans sa forme de ratio de chance
(Odds ratio).

L’induction de réseau POKS repose sur trois tests paramétriques entre deux
noeuds (conformément au traitement par paire). Ainsi, pour tester la relation A — B,
les deux premiers tests vérifient la force des probabilités conditionnelles P(BJA) et
P(—A|-B) en utilisant une distribution binomiale, tandis qu’'un troisiéme test vérifie
le degré d’indépendance entre A et B par un test x2.

Une fois le réseau créé, la probabilité de chaque noeud représente le modele de

I'étudiant et elle est mise & jour a chaque nouvelle évidence observée.

Choix de l'item

Dans le TA, le choix de I'item & présenter est une étape commune 3 la TRI comme
a POKS. Dans le contexte du TA, le choix de Pitem consiste & identifier le niveau
des compétences du candidat avec le maximum de précision et en utilisant le moindre
nombre d’items ou, en d’autres termes, de choisir I'item le plus informatif & chaque

fois selon I’état de connaissance.
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Notre étude présente deux méthodes de choix d’item qui sont employées dans les
simulations réalisées. 11 s’agit. de 'approche de U'information de Fisher et I’approche
du gain d’information.

La fonction de U'information de Fisher est une méthode trés connue et utilisée en
statistique. Pour la TRI, elle correspond plus ou moins a choisir un item dont le point
d’inflexion de 'lCC est pres de la compétence évaluée.

Quant au gain de 'information, cette méthode vise & diminuer Ientropie globale
du test. L’item favorisé par 'approche du gain de 'information est celui qui maximise

la réduction prévue de lentropie.

Simulation et résultats

Nous comparons I’approche POKS a l'approche de la TRI avec deux parametres (2-
PL). Les résultats de simulations du processus de TA et la performance respective
des deux approches pour prédire le niveau de compétence sont rapportés.

Les simulations sont effectuées sur deux ensembles de données pour les deux ap-
proches : un test de 34 items portant sur les commandes UNIX administré & 48 indi-
vidus, et un test de 160 items portant sur la langue francaise administré & 41 candi-
dats. Chaque item peut prendre deux valeurs, réussi ou non.

Les simulations avec POKS et avec la TRI-2PL sont toutes deux réalisées avec
Pinformation de Fisher et la technique de réduction d’entropie. Les résultats sont
comparés aux réponses réelles selon deux métriques: (1) la capacité de classifier cor-
rectement le répondant selon qu’il réussit ou non le test (avec des seuils de 50%, 60%
et 70%) et (2) la capacité de prédire la réussite pour chaque question prise individu-
ellement.

Les résultats expérimentaux démontrent que les deux approches peuvent classifier
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effectivement et efficacement des candidats, avec une performance relativement com-
parable. Cependant, des différences plus significatives sont trouvées pour la prévision
des réussites aux questions individuelles.

Ce résultat démontre que POKS réussit, malgré la simplicité de son cadre bayésien,
& performer au méme niveau qu’'une approche reconnue comme la TRI. Sa meilleure
performance pour la prédiction des réponses individuelles n’est pas surprenante compte
tenu que la TRI n’a pas la prétention de prédire & ce niveau de détail, mais démontre
néanmoins le potentiel de POKS pour effectuer un diagnostic détaillé de la connais-
sance qui n’est pas possible avec la TRI & moins d’utiliser une approche plus complexe

et multidimensionnelle.

Discussion et conclusion

Etant donné que Papproche POKS offre un potentiel intéressant pour le diagnostic
détaillé du niveau de connaissance et qu’elle est, du point de vue computationel,
beaucoup plus simple que I'approche de la TRI, on peut conclure que POKS con-
stitue un candidat intéressant pour les environnements d’apprentissages adaptatifs et

intelligents.
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CHAPTER 1

INTRODUCTION

1.1 Intelligent Learning Environments

Intelligent learning environments are meant to adapt to the needs and knowledge
of individual students. In order to allow learning instruction to be individually de-
signed, intelligent learning environments first capture the student’s understanding of
the subject, then use this information to determine the difficulty of material and any
necessary remediation that best fit his current needs or knowledge level'. For exam-
ple, this could imply adapting a tutor’s didactic content and strategy, or adapting
hyperlinks of a documentation system, or some query retrieval result, etc. Example

of intelligent learning environments are:
e student study guides (Khuwaja, Desmarais, & Cheng, 1996b)
¢ adaptive hypertext and intelligent textbooks (Schwarz et al., 1996)
e intelligent tutoring systems (Mayo & Mitrovic, 2001; VanLehn et al., 2005)

e web based adaptive hyper-textbook, hyper-media and course-ware (Brusilovsky,

Schwarz, & Weber, 1996; Brusilovsky, Eklund, & Schwarz, 1997, 1998)

In summary, we use the words “intelligent learning environment” for those adap-
tive learning environments that are capable of tailoring the learning instructions and

materials, or learning progress upon individual student’s need and current knowledge

level.

1Only masculine forms are used in this study, e.g. he/his. However they are intended to, and
not limited to both masculine and feminine forms.



1.2 Student Modeling

Student model represents the learning system’s belief about the learner’s knowledge.
The student model is an essential component in intelligent learning environments that
are responsive to individual student’s needs and profiles. Student model builds and
maintains the system’s understanding of the student. The information provided by
student model are used to guide the learning systems to respond adaptively.

Intelligent learning environments often require fine grained assessment of the stu-
dents’s knowledge state. As the needs of assessing students in terms of mastery level
with respect to one or more knowledge units grow rapidly in intelligent learning en-
vironment, the importance of fast and reliable diagnostic assessment becomes a key
issue.

There are many techniques for generating student models. Most of them are
computationally complex and expensive, for example, Item Response Theory, and

Bayesian networks.

1.3 Computer Adaptive Testing (CAT)

Computer adaptive testing (CAT) applications are probably the earliest examples of
the use of intelligent user modeling techniques and adaptive learning environments
(see Eggen, 2004). For example, Graduate Record Examination (GRE) is a standard-
ized test administered through CAT?.

The principle behind CAT is to adjust test questions to the examinee’s knowledge
by taking into account how examinee answered previous questions. Taking the same
CAT, a low-ability examinee and a high-ability examinee will see quite different sets of

questions: the low-ability examinee will mainly see relatively easy questions, and the

2GRE is the test taken in order to get into graduate school in the United States. It is administered
by the Educational Testing Service (ETS) http://www.ets.org



high-ability examinee will see more difficult questions. Both individuals may answer

the same percentage of questions correctly, but because the high-ability examinee can

answer more difficult questions correctly, he or she will get a higher score.
Computer adaptive tests are usually carried out in an iterative fashion which is

often called CAT loop. The CAT loop process generally consists of the steps below,

1. Estimate an examinee’s most likely score from his observed responses to previ-
ously presented questions (if no responses history currently available, take the

population’s average score as the initial estimate).
2. Stop if some termination conditions are met, otherwise continue to Step 3.
3. Find the most informative item according to the estimated score.

4. Present the question to the student and record his answer to this question, then

return to Step 1.

This CAT loop process continues with the test gradually locating the person’s com-
petence level. The score that serves as an estimate of competence gets more accurate
with each question given. The test ends when the accuracy of that estimate reaches
a statistically acceptable level (or when a maximum number of items has been pre-

sented).

1.4 Comparison of Two Approaches in CAT

The original theory behind CAT is the Item Response Theory (IRT), a framework
introduced by Birnbaum (1968) and Lord and Novick (1968), and refined by a number
of other researchers since its introduction (see van der Linden & Hambleton, 1997,
Hambleton, Swaminathan, & Rogers, 1991). More recently, the Bayesian modeling

approach has also been applied to model an examinee’s ability based on test item



responses. This interest in Bayesian modeling has come not only from researchers in
educational testing, such as Rudner (2002) and Mislevy and Gitomer (1995), but also
from researchers in adaptive interfaces and user modeling (see, for example Conati,
Gertner, & VanLehn, 2002).

This study focuses on the link between the two fields, namely IRT and the Bayesian
student modeling techniques, which is one of the major probabilistic user modeling
techniques. We compare each approach and conduct a comparative performance
evaluation between IRT and one such Bayesian modeling approach named POKS.

POKS (Desmarais et al., 1996) is a specific Bayesian modeling approach partic-
ularly well suited for the comparison with IRT approach. Because, akin to the IRT
approach, it does not necessarily require a knowledge engineering effort to build the
model but, instead, relies on statistical techniques to build and calibrate the model.
Indeed, by relying solely on observable nodes to build a graph model of item-to-item
relations, there is no need to define latent skills behind each test item. The process
then becomes very similar to IRT for which no knowledge engineering effort is required
as a single latent skill (hidden node) is assumed for every test item.

Section 1.4 provides the basics of the IRT and Bayesian modeling approaches. It
is followed by more detailed descriptions of the specific IRT and POKS techniques

compared in this study (see Section 2.3.4 and Section 3.6).
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CHAPTER 2

OVERVIEW OF BASIC CONCEPTS

This section provides a general overview of basic background theories and concepts
of two student modeling approaches for the comparison of IRT and Bayesian modeling
in CAT. A more detailed and technical review of the specific frameworks compared

in this study is given in the following sections.

2.1 Computer Adaptive Testing and Item Response Theory

The prevalent means of conducting computer adaptive testing (CAT) is based on
the Item Response Theory (IRT). IRT establishes a conceptual model which bridges
students’ ability with the chances of success in test questions. Such underlying ability
of interest is referred as latent trait in IRT literature, (e.g. knowledge, skill, ability,
etc.), therefore Item Response Theory is also known as Latent Trait Theory.

In the testing context,
o Fxaminee is the synonym of test taker.
o Jiem is the test question presented to an examinee.

o [tem response is the answer received from examinee to given test question

(item).
Two types of item response can be obtained from items by definition.

— Dichotomous item responses (also called binary responses) are those ob-

tained from: (a) items that are scored correct or incorrect in achievement



tests (e.g. multiple choice); or (b) items that are dichotomously scored ac-
cording to a scoring key in an attitude, or personality scale (e.g. true/false,

agree/disagree).

— Polytomous items response (also called graded response, Likert, Likert-
type, or ordinal item responses) are those involve more than two scoring
options such as a five-point strongly agree to strongly disagree scale on a

personality or attitude measure.

This study only considers the case of dichotomous item response. In IRT, item
response to item ¢ is usually denoted as wu;, and u for the response vector to

itemsi=1,2,...,n3.

e Probability of correct response

One usually thinks of an individual either getting an item right or wrong, how-
ever it is more useful to think in the percentage (frequency) of success when we
have to deal with the test subjects and items repeatedly. Probability of correct

response can be elaborated in two hypothetical scenarios.

First, suppose we have the universe of people with some common ability level
take a given item. Some of those people will get this item right, others will
get it wrong. Thus, the probability of correct response is the value of average
percentage of correct response when the number of people approaches infinite

(see Lord & Novick, 1968).

In the second scenario, suppose we have a set of items of the same intrinsic
characteristics (see Section 3.1), and we assume an examinee’s responses to

those items will be independent of each other (e.g. no interference between

3The notation of item response in POKS is in preference to X;.



items, no skills learned from test, no fatigue). Similarly, this examinee will get
some items right and some others wrong. Likewise, the probability of correct
response is the value of average percentage of answering correctly when the

number of items goes infinite.

Note that the above two distinct scenarios only help to explain the probability
of correct response intuitively. Therefore, there is no difference in how one

interpreting it in practical use.

o Ability is the “score” on the scale of latent trait in IRT. Proficiency is another
word interchangeable with ability in IRT. They both refer to those unobservable
latent traits which determine the item response in the test. Given an item, the
ability is the only factor that will account for the probability of correct response

(see below). Ability is denoted as 6 in IRT.

The classical IRT models assume that a single ability level accounts for the exam-
inee’s performance (correct/wrong answers to the presented questions). IRT models
the relationship between examinee’s ability and his probability of correct response
into a theoretical function named item characteristic curve (ICC). The ICC functions
normally have an “S” shaped curve which implies that the higher the ability level
one examinee poses (e.g. more knowledged) the higher chance he will succeed in that
question. Each test item can have its own ICC item parameters. Several types of ICC
exist. One of the most widely used ICC is the two-parameter logistic model (2-PL),
it has desirable mathematical properties for practical use.

The shape of 2-PL ICC is modeled by two parameters: the item’s difficulty level
and the item’s discrimination power. Figure 2.1 illustrates the typical 2-PL ICC curve
corresponding to an item of difficulty b = 0 (average difficulty) and discrimination

a = 1. These two parameters, difficulty and discrimination, can be estimated from



data of each test item. Typically, parameters are estimated by a maximum likelihood

approaches (Baker, 1992).
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Figure 2.1: A typical ICC curve, with item parameter ¢ = 1,6 = 0

Once the parameters of the ICC curve are determined for all test items, it becomes
possible to derive the examinee’s most likely ability level from a given set of item
responses. Typically, the ability is estimated with a maximum likelihood model, but
a number of methods have been proposed and investigated for this task (Baker, 1992).

Section 2.3.4 provides more details on the IRT ability estimation.

2.2 Bayesian Modeling Approaches to CAT and Student Mod

eling

We will return to the IRT approach in Section 3.6 to provide the details on the specific
algorithms used in this study. Let us now turn to the Bayesian approach to student

modeling and describe how this approach is applied to CAT.



2.2.1 Bayesian modeling and Bayesian networks

Bayesian modeling provides a mathematical framework by which we can compute the
probability of a certain event given the occurrence of a set of one or more events. For
example, in CAT, one could compute the conditional probability of mastery of a test
item given the previous responses by using samples where such a response pattern
was found. This simple but impractical approach relies on the full joint conditional
probability table. The problem with this straightforward approach is, obviously,
that the number of conditional probabilities grows exponentially with the number
of items. The approach quickly becomes impractical because of limited data. For
example, computing the probability of correctly answering a specific test item given
the answers to the last 10 items would entail constructing a conditional probability
table of 219 entries, if we assume each item can take two values, {success, failure}.
A reliable empirical estimate of this set of conditional probabilities would require
thousands of data cases, whereas a subjective estimate is deemed too tedious and
unreliable.

There exist a number of means to avoid relying on the full joint conditional prob-
ability distribution to perform Bayesian inference. These means will vary according
to their assumptions, or according to the constraints they impose on the conditional
probabilities in a model.

The Bayesian graph models, and in particular the Bayesian networks (BN) frame-
work, are amongst the most prevalent approaches to Bayesian modeling. They allows
the modeling of only the relevant conditional probabilities and they can rest on a
sound mathematical scheme to update the probabilities upon the occurrence of an
event in the network (see Heckerman, 1995). Furthermore, the identification of the

relevant subset of conditional probabilities, the topology of the network itself, can
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be derived from empirical data (see Heckerman, 1995; Cheng, Greiner, Kelly, Bell, &
Liu, 2002; Liu & Desmarais, 1997). A simple example of such BN can be found in
Vomlel (2004a, 2004b, 2002).

To reduce the number of conditional probabilities to only the relevant ones while
maintaining consistent probability updates from new evidence, BN structures define
clear semantics of conditional probabilities and independence relations between nodes
in the network. It states that the probability of a node X;, given the evidence from the
nodes’ parents pa(X;), is independent of all nodes, except its descendants. Assuming
that the vector X3, ..., X; represents a specific combination of responses to test items
and concepts mastery for a given individual, it follows from the above definition of a

BN that the probability of this vector is:

k
P(X1,..., X)) = [[(Xilpa(X:)) (2.1)

i=1

where pa(X;) represents the set of parent nodes of X; in the BN.

For CAT and student modeling, the application of BN and graph models generally
consists in modeling the conditional probabilities as a hierarchy of concepts with
items as leaf nodes. Figure 2.2 illustrates a very simple graph structure that, in fact,
represents an IRT model. It contains a unique concept node, 8, and a set of item
nodes, Xq,...,X,. The semantics of this networks would state, for example, that the
probability of node X is independent of the probability of node X5 given the ability

0. This definition translates into:
P(X1|9;X2) = P(X1|9)P(X2) (2-2)

However, the probability that skill # is mastered depends on the responses to all item
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nodes. We return with more details on the IRT model in section Section 2.3.4.

Figure 2.2: BN structure of an IRT model, where  is the examinee’s ability and
{X1,Xs, ..., X,} arc the test items.

One of the major advantages of graph models over IRT is that the assessment
of the probability of mastery to a test item does not rely on a single trait, namely
the examinee’s ability level. High level concepts embedded in a graph model consti-
tute a powerful means of representing a variety of ability dimensions. For example,
Figure 2.2 can be augmented by defining multiple 8 over a set of test items, which,
in turn, can be organized as a hierarchy or as a directed graph structure with high
level 6 representing global skills. Moreover, misconceptions can also be included in
the structure.

The flexibility and representational power of graph models and their derivatives
have been recognized and applied to student modeling by a number of researchers in
the last decade, for example, Reye (2004; Conati et al., 2002; Jameson, 1995; Milldn,
Trella, Pérez-de-la-Cruz, & Conejo, 2000; Mislevy & Gitomer, 1995; Desmarais et al.,
1996; Martin & Vanlehn, 1995; Zapata-Rivera & Greer, 2004). They have also been
applied more specifically to CAT systems (Vomlel, 2004b; Milldn & Pérez-de-la-Cruz,
2002; Collins, Greer, & Huang, 1996; VanLehn & Martin, 1997). We will review some
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of this work in the remainder of this section. The specific Bayesian modeling approach

used in the current study will be further described in Section 3.6.

2.2.2 Student graph models

Vanlehn, Martin, Conati and a number of collaborators were amongst the most early
and active users of BN for student assessment (Martin & Vanlehn, 1995). In the
latest of a series of three tutors embedding a BN, Andes Tutor (Conati et al., 2002;
VanLehn & Niu, 2001) incorporates a BN composed of a number of different types
of nodes (rules, context-rules, fact, goal nodes). Each node can take a value of
“mastered” or “non-mastered” with a given probability. Probabilities can be com-
puted from Bayes posterior probability rule, or in a deterministic binary form (e.g.
P(X =1) —» P(Y = 1)), or in logical “and” and “or” relations with an arbitrary
amount of a noise factor that makes these relations non-deterministic. These rela-
tions are named leaky-or and noisy-and (see Neapolitan, 1998). Most conditional
probabilities in the network are subjectively assessed.

In Hydrive, Mislevy and Gitomer (1995) used a BN for assessing a student’s com-
petence at troubleshooting an aircraft hydraulics system. The BN is also engineered
through careful modeling of the domain knowledge in a hierarchy of abilities. Node
categories are not necessarily binary, as each node has its own set of values such as
{weak, strong} or {expert, good, ok, weak}. Conditional probabilities are first posited
by expert judgment and further refined with a data set of 40 subjects.

The work of Collins (1996) is amongst the first to create a CAT with a Bayesian
network. They use the notion of granularity hierarchies to define the BN. Granularity
hierarchies are essentially aggregations of concepts or skills into a hierarchy, akin to
Mislevy and Gitomer (1995) where the leaves are test items and the root represents

the whole subject domain. The BN tested are knowledge engineered from expert
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knowledge and different topologies are compared. Since the system is a CAT, the
choice of the next item is adapted to optimize ability assessment. It is based on a
utility measure that yields the item with highest discrimination factor, that is, the
item whose difference in ability estimate, is the highest between a correct and an
incorrect answer.

In his unpublished Master thesis, Collins (1996) compares a BN model with an
IRT model. He calibrates a BN model with conditional probabilities obtained from
an extensive pool of 6000 data cases for a test of 440 items, which in fact corresponds
to 44 items replicated 10 times to simulate a large test!. Comparison of the BN
approach with an IRT model revealed that, after approximately 20 items, the BN
approach is more effective in classifying examinees as master or non-master than the
two IRT-based algorithms they compared it with, namely EXPSRT and FXPSRT-2
Collins (1996). However, it is not clear what impact the replication of the original
44 items can have on these results and how much this could favor one approach over
the other. For example, the non adaptive paper and pencil test proved more accurate
than the IRT and BN approaches, which is unexpected and could be explained by
this replication®.

In a more recent CAT system, Milldn and Pérez-de-la-Cruz (2002) defined a hier-
archical BN with three layers: concepts, topics, and subjects. A fourth layer links test
items to concepts. They used different means of computing the updated probabilities
according to the layer. The concepts, topics, and subjects layers use a summation
formula to yield an updated probability. New probabilities are a function of weights

assigned to evidence nodes according to their importance, which can be a factor of

4Note that the BN only contained the 44 original nodes, not 440.

5The POKS approach used in the current study would be highly influenced by the replication
of items. Replicated items would be aggregated into fully connected nodes, in effect merging them
into the equivalent of a single node.
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time devoted to a certain topic in a course, for example. At the items level, the
probabilities that a concept is mastered is a function of test items. That probability
is computed from a conditional probability with parameters modeled from adopted
ICC function such as the one in IRT. They tested the accuracy of their approach with
simulated students and a test of 60 questions and found a relatively good performance

for assessing mastery of each of 17 different concepts with error rates varying from

3% to 10%.

2.2.3 Learning graph models from data

In contrast with most Bayesian student model approaches, Vomlel (2004b) has con-
ducted experiments with empirically derived BN. This work is, to our knowledge, the
only experiment using empirical data to construct BN, although it does involve some
knowledge engineering effort for categorizing concepts and test items into a hierar-
chy. Vomlel used HUGIN PC algorithm (Jensen, Kjeeul, Lang, & Madsen, 2002)
to calibrate a number of network topologies from 149 data cases of a 20 questions
arithmetic tests administered to high school students. The basic topology of the net-
work was constrained based on a knowledge engineering of the domain with experts,
but HUGIN was used to refine or define parts of the BN’s structure. The BN was
composed of a few skills and student misconceptions. Some of the different BN struc-
tures tested incorporated hidden nodes that were created by HUGIN’s BN induction
algorithm. Conditional probabilities were all calibrated from empirical data. The
results show that an adaptive test with such BN can correctly identify the skills with
an accuracy of approximately 90% after the 9th question and performs significantly

better than a fixed question order test.



2.3 Considerations for Comparing IRT and Bayesian Mod-
eling

When comparing IRT with Bayesian modeling, the question of how the model is built
and calibrated (or learned) is a crucial one, as the two approaches differ significantly
on that issue. IRT modeling is entirely based on calibration from data and has limited
modeling flexibility, whereas Bayesian modeling offers much more flexibility but it
involves knowledge engineering efforts that can also be limiting for many applications.
These issues are central to the practical use of student modeling and we discuss them

in more details in this section.

2.3.1 Automated approach considerations

The IRT models are empirically derived from test data and student expertise is solely
defined by a set of observable test items, which usually take on two possible values:
mastered or non-mastered®. IRT does not rely on any subjective assessment, nor on
the ability of a domain expert knowledge engineer, as it requires no human interven-
tion to build the model. The same can be said about POKS with item only node
structures. Such algorithmic techniques, for which the model is learned or induced
from empirical data, have important advantages that stem from their amenability to

complete automation:
e It avoids the so called “domain expert bottleneck” and is thus more scalable.
¢ [t is not subject to human biases and expert ability to build domain models.

e It lends itself to automated updates when new items are added to a test (a

very common situation for qualification tests where items need to be regularly

9Besides mastered and non-mastered, a third category is often used, undecided, and any number
of categories can be defined in theory.
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renewed).
o It allows dynamic re-calibration of the model as new data is gathered.

The last two features are highly regarded by practitioners since test content is often
subject to frequent updates which impose a strong burden for the maintenance of

CAT test content.

2.3.2 Graph model considerations

What IRT lacks is the ability to make detailed cognitive assessment such as identify-
ing specific concepts or misconceptions. In the original IRT, there is no provision for
dividing the knowledge domain into different concepts that can be assessed individu-
ally, except by segmenting a large test into smaller ones, or by using what is known as
multidimensional IRT (MIRT) models (Reckase, 1997; McDonald, 1997). But as we
move towards MIRT, then some knowledge engineering effort is required to identify
the dimensions and to classify items according to each of them. It becomes a graph
model with multiple hidden nodes.

Our review of Bayesian student modeling revealed that the prevalent approach is to
follow knowledge engineering techniques to build sophisticated graphical models with
multiple levels of hidden nodes. Such models are often structured into a hierarchical
decomposition of concepts into more and more specific skills, with items as leaf nodes.
In some variants, misconceptions, multi-parents nodes, and sibling links can add yet
more cognitive assessment and representation power to such structures. This is an
essential feature of many intelligent learning environments that rely on fine grained
student modeling.

However, this flexibility comes at the cost of modeling efforts to define the struc-

ture by domain experts, who must also be knowledgeable in Bayesian modeling. Be-
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yond the structural definition, the problem of calibrating hidden nodes relations and
nodes with multiple parent relations is paramount because of the lack of sufficient
data cases (Jameson, 1995). Complex graph models often involve simplifications and
approximations such as leaky-AND/OR gates (Martin & Vanlehn, 1995; Conati et al.,
2002) and weighted means (Milldn & Pérez-de-la-Cruz, 2002) thereby weakening the
validity and accuracy of the model.

As a consequence of the above obstacles, complex graph models leave little room
for automation and its benefits. Although recent developments has shown that small
networks of a few tens of nodes can be reliably derived from empirical data of a few
thousand cases (Cheng et al., 2002) this is still impractical in student modeling and the
automated construction of a BN network remains a difficult problem that involves
complex algorithms and considerable computing resources. In practice, heuristics
and some degree of expert intervention are required for building a BN. With the
exception of Vomlel (2004b), who has used the combination of a network topology
induction system with knowledge engineered adjustments to the structure, Bayesian
student models do not allow automated model building. When used, empirical data
serves the sole purpose of calibrating conditional probabilities, and yet, many also

use subjectively estimated parameters.

2.3.3 Item node structures

Item node structures are networks with links among item themselves, as opposed to
hierarchical structures of concepts with items as leaf nodes. They are particularly
subject to the difficulties of using Bayesian graph models because the number of
nodes can be large (e.g. in the French language test used for this study, we have
160 item nodes) and their structure is not as apparent as when dealing with con-

cepts. Nevertheless, the Theory of Knowledge Spaces (Falmagne, Koppen, Villano,



18

Doignon, & Johannesen, 1990) states that items do have a structure and that it can
be used for making knowledge assessment. But the obstacles to using a knowledge
engineering approach and the amount of data required for the precise calibration of
Bayesian networks makes such approach impractical.

We will see in Section 3.6 that POKS addresses these obstacles by reverting to
binary relations, which allows calibration with small data sets, and using strong as-
sumptions. That approach makes POKS amenable to algorithmic model construction
and calibration. However, the issue of detailed cognitive assessment remains since
concepts have to be included to provide fine grained assessment. We return to it in

Section 6.9.3.

2.3.4 Item selection

There is a common concern to IRT and POKS in adaptive testing, i.e. how to choose
the item that will be presented to the examinee based on his performances or profiles.
The criteria of selecting such “optimal” item depend on the goals and achievements
that an adaptive testing is meant for.

In CAT context, the goal of item selection can be generally expressed as, using the
least number of items to identify the examinee’s ability level with maximum precision,
or in other words, choosing the most informative item.

Note that choosing the most informative item is only one of many alternative
strategies. The choice could also be determined by other considerations, such as the
need to randomize and diversify the items presented across examinees, or to adapt
item difficulty to ability level. Moreover, the choice of the items administered could
be outside the control of the system. For example, the system could be in a non-
intrusive, observational mode, as it is often the case in advice giving interfaces.

However, in the context of the current study, we will follow the usual CAT goal
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of assessing ability with the least number of questions. There are numerous measures

for finding the most informative items, such as

the IRT item information function (Birnbaum, 1968), also known as Fisher

information;

e the minimum information cost (Lewis & Sheehan, 1990);

the information gain (entropy reduction), or finally;

the relative entropy, also known as Kuller-Leiber distance (see Eggen, 1998).

The readers are referred to Rudner (2002) for a comparative studies of some of these
measures. Section 4.6 discusses two item selection methods used in this study, Fisher

information and information gain.

Summary

This section reviews the basic background theories and concepts of two student mod-
eling approaches in this comparison study. IRT is the prevalent CAT approaches for
student modeling, it has been widely used in the practical use over decades. Bayesian
modeling is relative new in the field of CAT, however its advantage of being a graph
model makes Bayesian network a promising tool for the fine grained knowledge as-
sessment. The modeling considerations for comparing IRT and Bayesian modeling
approaches outline the common concerns in model creation and calibration for these
two approaches. However, a specific Bayesian modeling approach, POKS is able to
accommodate the differences and put the comparison on the same footing. The de-
tailed techniques of IRT and POKS are illustrated in Section 2.3.4 and Section 3.6

respectively.
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CHAPTER 3

ITEM RESPONSE THEORY

Item Response Theory (IRT) is a classic approach to model students’ skills. It
has been used in CAT application over decades. This section describes IRT and its
underlying approaches of estimating examinee’s ability and item parameters.

The item characteristic curve (ICC) is the backbone of IRT which describes the
relationship between an examinee’s internal mental state (ability level) and his exter-
nal behavior (the probability of correct response to presented questions). Two types
of ICC model, normal ogive model and logistic model are examined in Section 3.1.

It is useful to elicit some further information regarding the overall test from indi-
vidual test items’ ICC. Section 3.2 explains the idea of local independence between
individual item’s ICC in a test. Under the assumption of local independence in IRT,
Section 3.3 elaborates on the likelihood function for two categories of response pat-
tern (responses received from a single examinee or all examinees). The likelihood
functions provide the overall information regarding the responses pattern of items in
a test.

Section 3.4 and Section 3.5 investigate the two building blocks of IRT framework,
ability estimation and item parameter estimation procedures. Both procedures em-
ploy the technique of maximum likelihood estimation to likelihood functions.

Section 3.6 responds to a common concern in IRT and CAT, how precise the
examinee’s ability estimate is. By defining test information function, the amount of
information obtained from administering a set of items or the whole test is given in

substantial number for further comparison and analysis.
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3.1 Item Characteristic Curve (ICC)

The item characteristic curve (ICC) reflects the intrinsic characteristics of a certain
item, and gives the relationship between the probabilities of a correct response across
a range of ability. Thus, modeling ICC concerns the determination of the function
form and the parameters incorporated in the function.

Section 3.1.1 and Section 3.1.2 examine two ICC models and their corresponding

mathematical properties, normal ogive model and logistic model respectively.

3.1.1 Normal ogive model

In Terman’s (1916) extension work of Binet-Simon Intelligence Scale, he fitted ICC
by graphical means in order to address the relationship between two variables, the
proportion of correct responses from empirical data and a criterion variable which is
considered to be an unobserved hypothetical variable (roughly equivalent to latent
trait in IRT). While fitting smooth functions to the observed proportion of correct
response can be done by graphical means, the resulting curves lack mathematical
rigor. If appropriate mathematical functions could be found that both fit the observed
data and have reasonable mathematical properties, the theoretical aspect of the ICC
could be advanced. Terman (1916) has shown that the empirically obtained item
characteristic curves have the appearance of a cumulative distribution function (‘S’
shaped). In addition, only two properties of the item characteristic curves, difficulty
and discrimination factors, are needed to describe an item’s technical characteristics.

Since the normal distribution (also called Gaussian distribution) is a keystone of
statistical theory, it is not surprising that the normal ogive has been used as the ICC
model. Richardson (1936), Ferguson (1942), and Finney (1944) have justified the use

of the normal ogive as an ICC model on pragmatic ground. Therefore, in typical sets
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of item response data, the normal ogive has proved to be workable model (Baker,
1992).

Normal ogive function is defined as:

(z) = / \/—1:@42/% (3.1)

where e is the natural logarithm constant.

Therefore, the two-parameter normal ogive ICC model is defined as:

L(@) 1 )
P() = ®[L(H)] = T et 2dt (3.2)
a(f-b
= oy \/L_ e't2/2dt
oo 27

where L(6) = a(6—b), 0 is ability level, b is the difficulty parameter, a is discrimination

parameter.

3.1.2 Logistic model

A function which very nearly coincides with the normal ogive model, and which has
advantages of mathematical convenience in several areas of application, is the logistic
distribution function.

Logistic distribution function is defined as:

V(@)= (3.3)

Haley (1952) has shown that, for all —oo < z < o0,

1B (z) — U(1.7022)] < 0.01 (3.4)
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which implies that the difference between normal ogive function (Equation 3.1) and
logistic function (Equation 3.3) is very small, i.e. less than 0.01 for every set of item
parameter values. Therefore, the two ICC models give very similar results for most
practical work.

The two-parameter logistic (2-PL) ICC model is defined as

_ 1 _ 1
T 1+ e-DLO) 1+ e-Da(6-d)

P(0) = Y[DL(9)] (3.5)
where L(0) = a(f — b), 0 is ability level, a and b are item parameters whose roles are
generally the same as those in the two-parameter normal ogive model (Equation 3.2),
and D ~ 1.7 is a transforming scale factor between normal ogive and logistic model
(see Equation 3.4).

Equation 3.3 has some favorable mathematical properties, such as the simple form
of 1st and 2nd order derivatives, logistic ICC model (Equation 3.3) is often treated
as a mathematically convenient, close approximation to the classical normal ogive
model.

Under some circumstances, an examinee presenting extremely low ability level
could answer an item correctly just by guessing. In order to model such impact, a
third parameter guessing factor ¢ is introduced to 2-PL model (Birnbaum, 1968).

The three-parameter logistic (3-PL) model is defined as

1

P(Q) = c+(1 —C)m

(3.6)

where b is the difficulty parameter, a is discrimination parameter, ¢ is guessing para-
meter, 8 is ability level.

Sometimes one may wish to restrict the discriminant power of the items, therefore,



the discrimination parameter a can be dropped from Equation 3.5.
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The one-parameter logistic (1-PL) ICC, also called Rasch model, is defined as

1

P() = 1+ e~ (-0

(3.7)

which is exactly the 2-PL model with a discrimination parameter a fixed at unity (see

Birnbaum, 1968).

In summary, 1-PL, 2-PL and 3-PL ICC models are

(1—¢
P)=c+ —————— 3-PL
( ) 1+ e—Da{0-b)
1
Pl) = —— 2-PL
1 +6—Da(0—b)
1
P(@) = ————‘j(—é—_—gj‘ 1-PL or Rasch model
\ l+e
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Figure 3.3: Logistic ICC curves



Figure 3.3 depicts several logistic item characteristic curves with various a,b,c
values which jointly determine the shape of curves. Some general properties of logistic

ICC models can be inferred from Figure 3.3

e Parameter c is the probability that a person completely lacking in ability (6 =
—o0) will answer the item correctly. It is also called the lower asymptote. If an

item cannot not be answered correctly by guessing then ¢ = 0.

e Parameter b is a location parameter, it determines the position of the curve
along the ability scale. The more difficult the item, the further the curve is
to the right. The curve has its inflection point at & = . When there is no
guessing, b is the ability level where the probability of a correct answer is 0.5.
When there is guessing, b is the ability level where the probability of a correct

answer is (1.0 — ¢)/2.

e Parameter a is proportional to the slope of the curve at the inflection point.
This slope is actually is 0.425a(1 — ¢). Thus a represents the discriminating

power of an item, the degree to which item response varies with ability level.

One special case of interest is that an item could have perfect discrimination. The
ICC of such an item is a vertical line at some point along the ability scale. A close
approximation of ideal perfect discrimination is achieved by having relatively large a

value, e.g. see curve with a = 10.0 in Figure 3.3.

3.2 Local Independence Assumption

Recall the normal ogive (Equation 3.2) and logistic (Equation 3.6) ICC models, they
assert that the probability of success on an item depends on item parameters and

examinee ability #, and on nothing else. If the model is true, an examinee’s ability
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0 is the only one required to determine his probability of success on a specific item.
In other words, if we know the examinee’s ability, knowledge of his success or fail-
ure on any other items will change nothing to the probability of success to a given
item. The principle just stated is Lazarsfeld’s assumption (Lazarsfeld, 1959) of local
independence.

Stated formally,

Py = 110) = P(u; = 10, uj,ur,...) (i %4k, ...) (3.9)

A mathematically equivalent statement of local independence is that the probability
of success on all items is equal to the product of the separate probabilities of success.

For just three items i, j, &, for example

P(u; = 1,u; = 1,u = 118) = P(u; = 110)P(u; = 1|0)P(uy = 1|6)

Local independence is an important assumption that has been taken as a cor-
nerstone of TRT. Ttem Response Theory posits local independence, or conditional
independence of item response given item parameters and examinee ability parame-
ters. By taking the assumption of local independence, one can elicit the likelihood
function in a product form (see Section 3.3).

Many researchers have challenged the validity of local independence assumption
in the context of practical adaptive testing and this assumption is still a debatable
issue in IRT (see Mislevy & Chang, 2000; Jiao & Kamata, 2003). In the scope of this

study, we take it for granted.
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3.3 Likelihood Function

We have given a simple example of joint probability of item response pattern received
from three items in Section 3.2. In this section, we will give the general forms of
joint probability of item response pattern to n items, for both one examinee and all
examinees cases. The function of joint probability of item response pattern are called

likelihood function in IRT.

3.3.1 Joint probability of item responses for one examinee

Suppose we have observed all the item responses u; (i = 1,2,...,n) for one examinee
and for a given #. This is the case when one examinee takes n items in the test.
For a single item 4, the conditional probability given 8 of a single item response

u; is defined as

L(w]f) = (3.10)

P(u; =010) =1 — Pi(u; = 1|8) if w = 0

This can be written more compactly in various way because u; = 1 or 0. We shall

write

L(w|0) = P*Q; ™" (3.11)

7

where P; = Pj(u; =1|0), Q; =1 — P, and u; = 1or0
Because of local independence, success on one item is statistically independent of

success on other items. Therefore, the joint probability of all item responses, given



0, is the product of the distributions for the separate items:

L(u|0;a,b,c) = L(ui,ug, ..., u,l0) = H Pl (3.12)

i=1

where:
P; = P;(u; = 1]0) is the probability of correct response to item ¢, and Q; = 1— P,
u; is the response to item ¢, 1 for success and 0 otherwise,
u is the vector of responses {u, ug, ..., Uy},
a, b, ¢ are vectors of item parameters a;, b;, ¢; (1 = 1,,...,n), and

f is ability level of the examinee.

3.3.2 Joint probability of item responses for all examinees

The joint probability of the N different w for all examinees is the product of the

separate probability. This joint probability is then

N n
L({U|0,a,b,c) = L{uy, uz,...,un|0) = H H P Z»ij (3.13)
j=1i=1
where:

P,; = P;(6;) is the probability of correct response to item 7 for examinee j,

u;; is the response to item ¢ for examinee j, (i =1,2,...,n;5 =1,2,...,N)

U is the matrix of responses,

a, b, ¢ are vectors of item parameters a;, b;, ¢; (i =1,,...,n), and

8 is the vector of ability for N examinees, {0,0s,...,0n}.

We return to Equation 3.13 in Section 3.5 on JMLE.
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3.4 Ability Estimation

The essential goal of IRT is to obtain a measure of an examinee’s ability level based
on the observation of his responses to the n items administered.

Section 3.3.1 suggests that Equation 3.12 (the joint probability of observed re-
sponses) can be solved for 8, the unknown ability level, if item responses are observed
and item parameters are known from pre-testing. Therefore, it is possible to infer the
examinee’s ability level from his observed responses by finding an ability estimate g
that maximizes the likelihood function in Equation 3.12. The ability value obtained

in this manner is called maximum likelihood estimator 4.

3.4.1 Maximum likelihood estimation (MLE)

The process of maximizing the likelihood function in Equation 3.12 with respect to
ability level variable is maximum likelihood estimation (MLE).

Maximum likelihood estimation is a popular statistical method used to make infer-
ences about parameters of the underlying probability distribution of a given data set.
By definition (Harris & Stocker, 1998), a likelihood function L(t) is the probability or
probability density for the occurrence of a sample configuration, x1,xs, ..., %, given

n
that the probability density f(z|t) with parameter ¢ is known: L(t) = H flzjt) =
fzq|t) -+ f(z,]t); and a maximum likelihood estimator  is a value of thg parameter
t such that the likelihood function L(#) is a maximum.

The numeric means to obtain maximum likelihood estimate of parameter ¢ corre-
sponds to finding the roots by solving the equation 9L(t)/0t = 0, where ¢ represents
the variable of interest.

Suppose a given examinee 7 responds to the n items of a test, and the responses

are dichotomously scored, u;; = 0,1, where ¢ designates the item 1 < ¢ < n, and j
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designates the examinee 1 < j < N, yielding a vector of item responses of length n
denoted by u; = (u14, Uaj, - - ., un;|6;). Under the local independence assumption, the
u;; are statistically independent. Thus, the probability of the vector of item responses

for a given examinee is given by the likelihood function

[

L = P(u;l6) = [ [ P65 Qu(6,)" ™ (3.14)

=1

To simplify the notation, let P;(6;) = P;; and Q;(0;) = Q;; then

ij

L= P(ul0) = [ ] B Qi (3.15)
=1

Taking the natural logarithm of the likelihood function yields

n

= IOgL = IOg P('LLJ‘Q) = Z[’U@j IOg Pij + (1 - Uij) IOg Qij] (316)

i=1

Since parameters for all n items are assumed to be known here, F;; are functions of
item characteristic curve and only derivatives of the log-likelihood with respect to a
given examinee’s ability parameter will need to be taken in order to solve the problem

of max : log P(u;|0).

Ol _ N~ [ 0P  1—uy; 0Qy
00; <~ |P; 0b; Qi; 09,

i=1

(3.17)

The derivatives of Pj; and @;; with respect to the ability parameter will be de-
pendent on the item characteristic curve model employed. For purpose of this pre-
sentation, these derivatives will be left in their definition form.

The maximum likelihood estimation procedure seeks the value of éj which maxi-

mizes the likelihood function. It is equivalent to seek the maximum of log-likelihood
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function. A general solution to such maximum problem is finding the value of ; that
satisfies the condition 9l/06; = 0. The Newton-Raphson technique is usually used
to obtain the estimates of an ability parameter via an iterative procedure. Thus, the
second-order partial derivatives of the likelithood function with respect to the ability
parameter will also be needed. For a given examinee, a Newton-Raphson equation can
be established and solved iteratively for the maximum likelihood estimate of ability.
This equation is as follows

; ; o2 [al

[05]k+1 = [05]x — [—] ‘A= (3.18)

00;* A 00;]

When this Newton-Raphson procedure has been performed, an ability estimate éj for

the examinee j is obtained. In this study, the Newton-Raphson equations for ability

parameter estimation are presented under 2-PL ICC of interest (see 3.4.2).

3.4.2 MLE with 2-PL ICC model

As mentioned in Section 3.1, the logistic models are favored over the normal ogive
models for computational ease. This assertion stay upright here in the case of MLE.
As the Newton Raphson procedure of MLE needs the information of 1st and 2nd
derivatives of log-likelihood function, the logistic models stand out for the simplicity
and feasibility in its mathematical expression for such 1st and 2nd derivatives.

Consequently, the equations for the maximum likelihood estimation of an exami-
nee’s ability will be derived below using 2-PL model. These equations also apply to
1-PL Rasch model by just substituting a = 1.0. The equations for 3-PL model are
omitted here’.

Again, the first and second derivatives of the log-likelihood with respect to ability

"First, the guessing parameter ¢ in 3-PL model makes the MLE equations more complicated than
2-PL model. Secondly, we did not use 3-PL in this study, the reason is discussed in Section 3.5.2
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need to be computed in 2-PL ICC.
The OP;;/00; and 0Q;;/90; of 2-PL model are

J
0Qi;
5. = Da; P Qs (3.20)

where D is the constant and a; is the discrimination parameter in 2-PL ICC (see
Equation 3.5). Substituting these derivatives in Equation 3.17 yields the first deriv-

ative of the log-likelihood with respect to f;, and it is
ol -
=1
The second-order derivative of the log-likelihood function with respect to 6; is

== (Da))*P;Q; (3.22)

i=1

Substituting Equation 3.21 for 81/96; and Equation 3.22 for the 8*[/06; in Equation 3.18

yields
[ 'n -1 n
Bl = [0+ | (Dai)*PyQi| - {Z Da;(uy; — Py) (3.23)
Li=1 k i=1 k
> Dai(ui; — Py)
= [+ | = (3.24)
> (Da;) PyQy
L i=1 k

which could be solved iteratively for the value of éj for each examinee.
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3.4.3 Mathematical properties of MLE

In general, the maximum likelihood estimation approach has desirable mathematical

and optimality properties, for example (see NIST, 2003),

e [t becomes minimum variance unbiased estimator as the sample size increases.
By unbiased, we mean that if we take (a very large number of) random samples
with replacement from a population, the average value of the parameter esti-
mates will be theoretically exactly equal to the population value. By minimum
variance, we mean that the estimator has the smallest variance, and thus the

narrowest confidence interval, of all estimators of that type.

¢ It has approximate normal distributions and approximate sample variances that
can be used to generate confidence bounds and hypothesis tests for the para-

meters.

However, it is noteworthy that maximum likelihood estimation approach has some

common disadvantages.

e It can be heavily biased for small samples and the optimality properties may

not apply for small samples (see Baker, 1992, ch. 3,4).

e It can be sensitive to the choice of starting values.

In summary, the estimation of a single examinee’s ability is based on his vector of
responses to n binary items and known values of item parameters. The mathematical
details of the solution equations varies on the type of ICC used. In the case of 2-
PL model, the estimation process was formulated as an iterative Newton-Raphson
procedure.

The maximum likelihood procedure for the estimation of an examinee’s ability is

the second one of the two fundamental blocks underlying IRT test analysis procedures
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for dichotomously scored item (the first block is the item parameters estimation pro-
cedure, see Section 3.5). These two blocks will be incorporated in various ways to
yield procedures that estimate both the item parameters and examinee parameters

for a set of test results.

3.5 Item Parameters Estimation

Recall the approach of ability estimation, the ability estimate is obtained by finding an
ability value that maximizes the likelihood function which is just the joint probability
of item responses for one examinee L(u|0, a,b, ¢) (see Equation 3.12). The essence
of this case is that the joint probability of item responses for one examinee is treated
as a single variable function of ability level 8, and the remaining parameters, such as,
examinee’s responses and item parameters, are taken as known parameters.

Likewise, the IRT joint probability of item responses for all examinees L(U |6, a, b, ¢)
(see Equation 3.13) can be treated as a multivariate function of item parameters
a, b, ¢ and ability parameters 8 when all examinees’ responses U are known. We can
presumably think there exists a set of a, B, ¢, 6 that best fits our observation of item
responses in the way of maximizing the likelihood function.

The IRT joint maximum likelihood estimation (JMLE) is an approach that esti-
mates item parameters by finding a, b, c and 8 values that maximizes the likelihood
function L(U10, a,b, ¢) (Birnbaum, 1968). Because the 6 values are simultaneously
evaluated along with item parameters a, b, and ¢, as a byproduct in this approach,

it is so called “joint” maximum likelihood estimation.



3.5.1 Joint maximum likelihood estimation (JMLE)

For the sake of simplicity, the parameter estimate problem can be expressed in the
following. We are given a matrix U consisting of the responses (u;; = 0,1) of each
of N examinees to each of n items. To be general, we assume that these responses
arise from a 3-PL model (see Equation 3.6). We need to infer the parameters of the
model: a;,b;,¢; (1 =1,2,...,n)and 6, (j = 1,2,...,N).

The maximum likelihood estimates are the parameter values that maximize the
likelihood L(U |8, a, b, ¢) given the observed U. Maximum likelihood estimates are
usually found from the roots of the likelihood equations (see Equation 3.13), which
set the derivatives of the log-likelihood equal to zero.

Let | = log L(U 18, a, b, ¢), the log-likelihood equations are

8[ = Ugj — H]’ 8PU

D D v =0 (j=1,2,...,N) (3.25)
88; :g%%ij:o (i=1,2...n) (3.26)
% :é%@?%zo (i=1,2,...,n) (3.27)
68_; :i%%ﬁj =0 (i=1,2,...,n) (3.28)
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In general, for the three-parameter logistic model, we have

aPij DaiQij(P)ij - Ci)

09j 1-— C;

0Py _ D0 = b)Quy(Py — )
aCLi 1- C;

oF; _ —Da;Qi;(Py — i)

ob, 1-—g¢

or; _ Qy

Jdc; 1-g¢

These formulas are given here to show their particular character. The reader need
not be concerned with the details.

The important characteristics of Equation 3.25 is that when the item parameters
a;, bi, ¢; (1=1,2,...,n) are known, the ability estimate 9} for examinee j is found
from just one equation out of the N equations (see Equation 3.25). The estimate 9}
does not depends on other . When the examinee parameter 6 are known, the three
other parameter a;, b;, ¢; for item i are estimated by solving just three equations out
of Equation 3.26, 3.27, 3.28. the estimates for item ¢ do no depend on the parameter
of the other items.

This suggests an iterative procedure where we treat the trial values of 0}-, (=
1,2,...,N) as known while solving Equation 3.26, 3.27, 3.28 for the estimates d;, Bi, &,
(t =1,2,...,n); then treat all item parameters a;, b;, ¢;, (i = 1,2,...,n) as known
while solving Equation 3.25 for new trial values éj, (j =1,2,...,N). This is to be
repeated until the numerical values converge. Because of the independence within
each set of parameters estimates when the other set is fixed, this procedure is simpler

and quicker than solving for all parameters at once.
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3.5.2 Known problems of JMLE

The Birnbaum’s JMLE approach for item parameters estimation explained in previous
section looks straightforward. However, the numeric computing for such procedure
is non-trivial. Some problems and difficulties of JMLE approached were reported by

Baker (1992),

o Biased item parameters estimation when sample size is small. Studies on LO-
GIST and BILOG tools suggests a rule of thumb in practical use, “JMLE works
best for large groups of examinees and tests with more than, say, 60 items and

1000 examinees”.

e FEstimation problems of 3-PL. model. The ¢; value is often overestimated while
a; is underestimated. When ¢; is poorly estimated, there will be an impact on
the estimation of remaining parameters a; and b;. The ability estimates 6 will
be indirectly affected when the item parameters are in error. In addition, an
initial item parameter estimate must be within a certain neighborhood of a real

parameter value for the Newton-Raphson iterative approach to converge.

e The Heywood Case. When the 2-PL and 3-PL models are employed in the
JMLE procedure, a phenomenon occurs in certain data set: discrimination
estimates for one or more item can become very large which, in turn, results in
large values of the ability estimates for examinees answering those item correctly.
In successive cycle, both the discrimination and the ability estimates go toward

infinity, and the overall solution diverges, i.e. “blows up”.

Since the item parameters estimation techniques is a broad issue in IRT, we only
outline the sketch of JMLE in this section and leave out the details of numeric com-

puting. Those details can be found at Birnbaum, 1968, ch. 17.9, Lord, 1980, ch. 12,
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and Baker, 1992, p. 84-113.

3.5.3 Alternatives to JMLE

A distinguishing characteristic of Birnbaum’s (1968) joint maximum likelihood esti-
mation (JMLE) paradigm is that examinee abilities are estimated along with the item
parameters. In IRT, the item parameters are often referred to as “structural” para-
meters, which are fixed in number by the size of the test; the ability parameters of the
examinees are the “incidental” parameters, which are the numbers depending on the
sample size. Neyman and Scott (1948) showed that, when structural parameters are
estimated simultaneously with the incidental parameters, the maximum likelihood es-
timates of structural parameters cannot be consistent as sample size increases®, with
the only exception for one-parameter logistic (Rasch) model.

Therefore, an estimation procedure for two- and three-parameter logistic IRT
model that avoids the problem of inconsistent estimation of structural parameters
has considerable value. The basic paper in this regard was due to Bock and Lieber-
man (1970), who developed a marginal maximum likelihood (MMLE) procedure for
estimating item parameters. Unfortunately, the Bock and Lieberman approach posed
a formidable computational task and was practical for only for very short tests. A
subsequent reformation of this marginal maximum likelihood estimation (MMLE)
approach by Bock and Aitkin (1981) has resulted in a procedure that is both theo-
retically acceptable and computationally feasible. Their reformulation, under certain
conditions, is an instance of an EM algorithm (see Dempster, Laird, & Rubin, 1977).
In general, the EM algorithm is an iterative procedure for finding maximum likeli-

hood estimation of parameters, where the E stands for expectation step and the M

8 A consistent estimator is an estimator that converges in probability to the quantity being esti-
mated as the sample size grows.
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for the maximization step. As a result, the combined name, MMLE/EM, will be used
to name the Bock and Aitkin procedure for estimating item parameters. Readers are

referred to (Baker, 1992, ch. 6) for more details.

3.6 Test Information Function

Section 3.4 has shown how to obtain a maximum likelihood estimate of an examinee’s
unknown ability. Given an examinee’s ability estimate, it is also of interest to have
some measure of how “precise” the estimate is. Test information function is the
indicator of such estimate precision that is frequently used in IRT literature and
CAT applications.

As its name suggests, the test information function gives a certain amount of “in-
formation” at a given ability level. Birnbaum (1968) has defined the test information

function as

_~ _[FOr ,
1(0) = Z BO0.0 (3.29)

=1

where P;(0) is obtained by evaluating the item response characteristic curve model
at 6, and P/(8) = 0P;(0)/06. Note that Equation 3.29 involves only the ability level
# and the item response characteristic curves of the items in the test.

Birnbaum (1968) has shown that Equation 3.29 is the upper bound on the amount
of information that can be yielded by any possible test scoring formula, thus pro-
viding another advantage to using the maximum likelihood estimate of ability (see
Section 7.2).

Test information defined in Equation 3.29 has a close relationship to MLE sample
variance. Cramer (1946) has shown that a maximum likelihood estimator § has a

normal asymptotic distribution with mean @ and variance 0% = 1/1(6), where I(9)
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is the test information and /1/1(0) is the standard error (see Section 7.2). Some
additional mathematical conditions are necessary, but the usual ICC models meet
them (Samejima, 1977). In the present context, the variance of interest O'gl g 18 the
variance of the conditional distribution of # at a given ability level 6. Thus, the larger
this variance, the less precise the estimate of 8 and the less information one has about
an examinee’s unknown ability level.

From a test theory point of view, defining the test information function in terms
of the variance of the conditional distribution of the maximum likelihood estimates of
ability is a crucial concept. It provides substantive interpretation of the meaning of
the amount of information. The greater the amount of information at a given ability
level, the more closely the maximum likelihood estimates of ability cluster around the
true but unknown ability level, hence, the more precise the estimate is.

We return to the test information when we discuss the Fisher information in

Section 5.1.

Summary

This section describes one of the two poles in our comparison study, the Item Response
Theory (IRT).

Item Response Theory generally assumes an single latent trait, examinee’s ability
level, behind observed sample of item responses. However, multiple latent traits can
be found in multidimensional IRT models and thus they are out of the scope of this
study. This latent trait (ability level) is treated as a conceptual index that intended
to assess an examinee’s ability or knowledge state in a single “score”.

Item characteristic curve (ICC) quantifies the relationship between the probability

of correct item response and examinee’s ability level given fixed item parameters. ICC
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model was originally developed using the normal ogive model but the logistic model
with the re-scaling provides virtually the same results while simplifying the compu-
tations greatly. Due to its amenability to mathematical analysis, logistic models (see
Equation 3.8) become the de facto ICC models in both theoretical and practical use.

The local independence assumption in IRT states the conditional independence of
item response given item parameters and examinee’s ability parameter. The likelihood
functions are derived from the local independence assumption. They link the joint
probability of observed item response pattern to examinee’s ability and the item
parameters.

Via the maximum likelihood estimation technique, it is possible to infer exami-
nee's ability or item parameters from observed sample responses data. The maximum
likelihood estimation is generally abstracted as the root(s) finding process. Newton-
Raphson based approaches are usually the applicable solutions in such situations.
From student modeling perspective, item parameters estimation offers the model cre-
ation solution, whereas the ability estimation is the inference process from established
toolbox. These are the two fundamental building block of IRT.

Test information function is of special interest because it gives the upper bound
to the information that can be obtained by any method of scoring the test. Moreover,
it provides a measure of how precise the ability estimate obtained from MLE is.

The other pole of in our comparison study is POKS. The next section will cover

POKS in details.
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CHAPTER 4

PARTIAL ORDER KNOWLEDGE STRUCTURE

(POKS)

Approaches such as Bayesian networks (BN) are considered highly powerful mod-
eling and inferencing techniques because they make few assumptions and they can
represent complex relationships among variables with efficiency and parsimony. They
can also be learned from training data. Yet, they generally lend themselves to a
variety of sound and eflicient inference computations. However, in spite of these
qualities, BN may not be always be the most advantageous technique in compari-
son to simpler techniques that make strong assumptions. A simple Bayes posterior
probability update approach under strong independence assumption, named POKS
(Desmarais et al., 1996; Desmarais & Pu, 2005a, 2005b; Desmarais & Meshkinfam,
2005; Desmarais et al., 2005) is such alternative, and it is explained in this section.

Section 4.1 examines POKS underlying theory, namely, the Theory of Knowledge
Spaces (Falmagne et al., 1990) first, which is based on item-to-item node network
structure. The POKS network is constructed solely on item nodes, without any
hidden nodes or nodes that come from knowledge engineering work.

Section 4.2 reviews the local independence among the item evidence node in
POKS. Under the assumption of local independence in item evidence nodes, Section 4.3
explains the steps of how to build POKS inference network, i.e. the network induction
process.

Following the network extracted from this induction procedure, we show how to
make inference of examinee’s knowledge state from observed information. Section 4.4

and Section 4.5 cover the techniques of updating item probability between nodes, or
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in POKS terms, the propagation of evidence. A small numeric example of evidence

propagation is provided in Section 4.6.

4.1 Ttem-to-item Node Structures and the Theory of Knowl-

edge Spaces

Probably the most distinctive characteristic of POKS is that it permits the inference
of known or unknown items based on this structure. It derives from the work of Fal-
magne et al. (1990). Others such as Kambouri, Koppen, Villano, and Falmagne (1994)
have worked towards using the structural characteristics of item-to-item structures to
infer an individual’s knowledge state.

Ttem-to-item relations have their cognitive grounding in the Theory of Knowledge
Spaces (Falmagne et al., 1990) and they are termed as surmise relations. The meaning
of such relation is essentially that we expect people to master these items in the reverse
order of these relations. Figure 4.4 illustrates such type of relations with a simple
example.

It can be seen that the example in Figure 4.4 comprises the following surmise
relations: @ — b — d and ¢ — ¢ — d. However, no relation exists between b and
c. For example, if a pupil succeeds item a, it will increase the estimated probability
of success to items b, ¢, d. Conversely, failure to item d will decrease the estimated
probability of success to items a, b, ¢. Finally, failure or success between items b and
c will not affect the estimated probability of success to the node according to the
Theory of Knowledge Spaces. °
However, POKS does not strictly conform to the Theory of Knowledge Spaces

because it uses partial orders such as Figure 4.4, whereas knowledge structures use

“Note that this is not the case for the IRT theory, nor of the Bayesian modeling techniques
reviewed in this study, which link every test items to one or more global abilities.
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1/3 + 2/3

Figure 4.4: A simple example of knowledge structure

AND/OR graph. The difference is that partial orders define possible knowledge
states closed under union and intersection, whereas AN D/OR graphs define possible
knowledge states closed under union only. Indeed, defining the knowledge state of an
individual as a subset of a global set of knowledge items, Falmagne and his colleagues
established that the set of possible knowledge states from a global set of items is
constrained by closure under union: if we join two individuals’ knowledge state, this
is also a possible knowledge state (for details, see Falmagne et al., 1990). If, for
example, we define X, and X, as two items that test different methods of solving a
problem and that any one of these methods can be used in solving a third item X, (but
at least one must be used), this would be reflected in knowledge structures theory as
an OR relation binding the three nodes and clearly expressing the alternative found
in the relation. It is also clear that the intersection of two individuals, each mastering
a single alternative method between X, and X,., would yield an invalid knowledge
state: Someone who masters X, but none of X, and X, (we ignore probabilistic
issues here). In POKS, we would likely find weak surmise relations X, — X, and
X, — X, capturing some of the information but not as accurately as with an OR
relation.

Nevertheless, because partial orders do capture to a large extent the constraints



on possible knowledge states and because the probabilistic nature of POKS makes it
more flexible and robust to noise, the use of partial orders remains a powerful means
of making knowledge assessment. Moreover, because OR relations are tertiary or
higher n-ary relations, they impose larger data sets to discover and are thus more

limited in their applications.

4.2 Local Independence

Another characteristic of POKS is that it makes the assumption of local independence
among evidence nodes. In POKS, we essentially make the assumption that we can
limit the modeling solely to binary conditional probability relations. More formally,
we make the assumption that for any node X having parents pa(X) = {X,1, ..., Xpn},

all parents are independent of each other:
P(X|Xp1, .-, Xpn) = [ [ P(X1X,0) (4.1)

Although this assumption is obviously violated in most contexts, the question of
whether it leads to significant errors is an empirical question that will be assessed and
discussed further '°. Local independency assumption implies that the acquisition of
knowledge can be modeled in Directed Acyclic Graph (DAG) or “partial order”. The
great benefit of making this assumption is that it allows the induction of the network
from a very small number of data cases. Only the analysis of binary relations data is
needed to create the model. In the current experiment, less than 50 data cases were

used to build the models.

ONote that the local independence assumption is also an issue as discussed in Section 6.9.3.
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4.3 POKS Network Induction

Knowledge structures such as the example in Figure 4.4 are learned from data. The

POKS graph model and induction technique is briefly reviewed here.

4.3.1 Nodes

As mentioned above, POKS structures, like other graph approaches, can include
nodes that represent concepts or test items, much like other user modeling graphical
models, and multiple dimensions could be represented by concepts and hierarchies of
nodes. However, for the purpose of comparing IRT and POKS, the nodes are limited
to representing test items. There are no other types of node, each node is a test item,
and each test item is a node. All items have equal weight for this experiment.

Each node, X;, is assigned a probability that represents an examinee’s chances of
mastery of that item, P(X;). Contrary to the IRT model, P(X;) is not a function
of 0, the ability level. It is a direct function of the probability of other items from
which it is linked with. The details of how to compute P(X;) in POKS is described

in Section 4.4.

4.3.2 Relation

Relations in POKS have the same meaning as knowledge spaces’ surmise relations:
They indicate the (partial) order in which people learn to master knowledge items (see
Section 4.1). Although surmise relations are different from causality relations found
in Bayesian networks, they allow the same type of inferences!!. For example, let X,
and Xj be two items in an item bank, a relation X, — X3, means that observing an

examinee succeed item X, will increases the estimated probability of success to item

Nn fact, causality also has the property of ordering events in time, and it is a non trivial philo-
sophical endeavor to determine that it has any other property.
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X3, by a certain amount. Conversely, a failure to item X, will decrease the estimated

probability of success to item X,.

4.3.3 Networks structure

In accordance with the assumption of local independence, the network construction
process consists in comparing items pairwise to look for a relation. To determine if

there is a directed link, X, — X, the three following conditions must hold:

P([P(Xy]|Xa)2pe] | D) > (1 — ac) (4.2)
P([P(—‘Xal"‘Xb)ch] I D> (1 - ac) (43)
P(Xp|Xa)#P(Xp) (4.4)

where:
P(X3|X,) = P(X, = 1|X, = 1) and P(=X,]|-X,) = P(X, = 0|.X, =0)

P, is the minimal conditional probability for P(X,|X,) and P(—=X,|—X,); an single

value is chosen for the test of all relations in the network, generally 0.5;

. is the alpha error of the conditional probability tests (Equation 4.2 and Equation 4.3);
it determines the proportions of relations that can erroneously fall below p,;

common values range from 0.2 and 0.5.
«; is the alpha error of the interaction test (Equation 4.4);

D is the joint frequency distribution of X, and X, in the calibration sample. This
joint distribution is a 2 x 2 contingency table with four frequency numbers,
{Zaby Tamby Toaby T-a—p}, rEpresenting the number of examinees in the sample data

broken down into these four situations:
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1. x4 success for X, and X,
2. Zg-p: success for X, and failure for X,
3. Z_gp: failure for X, and success for X,

4. r_g-p: failure for X, and X,

The first condition (Equation 4.2) states that the conditional probability of a
success for X, given a success for X, must be above a minimal value, p., and that we
can derive such conclusion from a sample data set D, with an error rate smaller than
.. The second condition (Equation 4.3) is analogous to the first and states that the
probability of failure for X, given a failure for X, must be greater than p., with a
maximal error rate of o, given distribution D.

These first two conditions are computed from the cumulative Binomial distribution
function. In inequality Equation 4.2, the value of P([P(X,|X,)] | D) is obtained by
the summation of the Binomial probability function for all distributions where z,

are less than the number actually observed in D, that is:

P([P(X|Xa) | D) = P(z<za-5|Xa)

Ta-b

= Z Bp(ia xaypc)
=0

Ta=b l_a . )
= X (%) m

=0

where z, = Z4 + .- The conditional probability of the second condition (in-
equality Equation 4.3) rests on the same function but uses Bp(i,z—s,p.) in place of

Bp(i, 24, pe)-
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The third condition (inequality Equation 4.4) is an independence test and it is

verified by a x? distribution test on the 2 x 2 contingency table of distribution D:

P(x*) < a

For small samples, the independence test used is replaced by the Fisher exact test.

The choice of value for the p. indicates the strength of the surmise relations we
want to keep. For example, if the order in which one learns to master two items
is highly constrained, in accordance with the Theory of Knowledge Spaces, then we
would expect to find that P(B|A) ~ 1 for a strong surmise relation X, — X,.
The value of p. represents the lower limit for which we accept a surmise relation.
The choice of a value is somewhat arbitrary, but we generally use p, = 0.5 in our
experiments.

The two values o, and «; represent the alpha error we are willing to tolerate when
concluding the corresponding tests. For very small samples, these values can be as
high as 0.5 in order to keep as many relations as possible. In our experiments they

are set between 0.2 and 0.1 (see Section 6.9).

4.4 Ttem Probability Update

When an item’s probability of mastery in the network changes, either through ob-
servation or through a change in the probability of a neighboring node, evidence is
propagated through the connected items in the network. If the probability increases,
the update will follow links forward, whereas if the probability decreases, the update
will follow links backward. We use the algorithm for evidence propagation from Gi-
arratano and Riley (1998). This algorithm is consistent with the Bayesian posterior

probability computation in single layered networks and corresponds to the posterior
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probability update. However, for multilayered networks, in which indirect evidence

gets propagated (transitive evidence from non directly connected nodes), an interpo-

lation scheme is used. This is explained in the numerical example of Section 4.6.
For computational convenience, the algorithm relies on two odds ratios: the like-

lihood of sufficiency and the likelihood of necessity respectively defined as:

O(Xy|Xa) .

Foer = To00) o
_ O(Xg|=Xy) )

LNy = ——O(Xa) (4.6)

where O(X) is the odds function, P(X)/Q(X) (where Q(X) = P(-X) = 1- P(X)),
and O(X|Y') is the conditional form, P(X|Y)/Q(X|Y).
It follows that if we know X, to be true (i.e. P(X,) = 1), then the probability of

X, can be updated using this form of equation Equation 4.5:

O(Xb|Xa) - LSa—»bO(Xb) (47)

and conversely, if X, is known false, then:

O(Xa|ﬂXb) = LNaﬂbO(Xa) (48)

The update process recursively propagates forward using Equation 4.7 when a node’s
probability increases, and backward using Equation 4.8 when it decreases.
In accordance with the local independence assumption in equation Equation 4.1,

it follows that the odds ratios are combined as the product of the LS of each parent



that is observed:

O(X;lpa(X;)) = O(X;) Y LSi.j (4.9)
Xi€pa(X;)
where pa(X;) are the observed parents of node X; and O(Xj) is the initial odds ratio.

Conversely, the LN odds ratios are also combined for the children nodes:

O(Xk|ch(Xy)) = O(Xk) Z LN (4.10)

X;€ch(Xy)
where ch(X}) are the observed children of node X;. We emphasize again that this
strong assumption is surely violated in most contexts, but it greatly simplifies node
updates by relying on functional computations (as opposed to the computations re-
quired for optimizing a system of equations) and on the network’s Markovian prop-
erty: only the network’s current state is sufficient to make future predictions. The

impact of this assumption’s violation will be assessed in the experimental evaluation.

4.5 Evidence Propagation Directionality

The evidence propagation scheme is unidirectional in the sense that if a node’s prob-
ability increases, no backward propagation is performed, and, conversely, no forward
propagation is performed when a node’s probability decreases. This may look as a
breach into standard Bayesian theory since posterior updates can occur in both di-
rections. In fact, it is not. It follows from POKS principle of pruning non-significant
posterior updates relations with the statistical tests Equation 4.2, 4.3, and 4.4. Let

us illustrate this with a simple example. Assume the following two question items:

a : Examinee is able to solve for z : % X

N

3
8



b : Examinee is able to find the answer to % X % =?.

The POKS induction algorithm would readily derive a — b from a data sample
taken from the general population on these two items, indicating that it is worth up-
dating b’s posterior probability if we observe a. However, the converse relation b — a
would probably fail the statistical tests for inequalities Equation 4.2 and Equation 4.3,
indicating that the inverse relation is not strong enough. Indeed, it is fairly obvious
that a success for item b does not significantly increase the chances of success of a
because the latter involves algebra and is significantly more advance than the former.

However, if we replace ¢ with an item of closer difficulty to b, such as:

4+8

1 _o
11 x

a : Examinee is able to find the answer to 5 =

then we would probably also derive b — a. The result would be a symmetric relation
(probably with different LN and LS values for a — b and b — a). In that case, a
probability increase or decrease in any node would affect the other node’s probability
in accordance with Bayes posterior probability update, and propagation would be
bidirectional.

When relations are symmetrical, X, — X, and X, — X, cycles involving two
nodes are created. There are two solutions to this problem, the first solution consists
in grouping symmetrical nodes into a single one. A second solution, adopted for
this study, is simply to keep symmetrical relations but to stop the propagation of
evidence once a node has already been visited during a single propagation run. This

is a standard procedure in message propagation and constraint programming systems.



4.6 Numerical Example

Let us illustrate numerically the evidence propagation with an example. Assume the

following relations hold:

and that in our sample we find:

P(X,) =03, P(X.Xy) =06, P(X.X.) =09

It follows from the above equations that observing X, first (ie. P'(X,) = 1) 12
would bring P'(X.) = 0.9, which corresponds to the value of the sample’s observed
conditional probability P(X.|X,). Further observing X, would bring P"(X,.) = 0.969,
which corresponds to P(X,| X, X, ). Inversion of the order of observation would bring
instead P'(X.) = 0.6 after observing X, (i.e. P(X.|X,)) and P"(X.) = 0.969, as
expected (i.e. P(X | Xy, Xa)).

Although odds are used in the algebra for computing the posterior probabilities,
it is equivalent to using the standard Bayes formula for obtaining the posteriors given
the observation X = 1 or X = 0. However, when the probability of a node increases
or decreases, an interpolation scheme is used to further propagate evidence.

When the probability of one of a node’s parent nodes changes by some value, with-
out actually being observed and thus reaching the value of 1 or 0, two interpolation
formulas are used to update this node’s probability. Assuming a relation ¢ — b, and
an increase in P(X,) of A, (i.e. P'(X,) = P(X,)+ A,), where P(X,) represents the

probability before the update and P'(X,) the probability after the update, then the

12We use the notation P'(X) to represent an updated probability and drop the conditional form,
P(X|evidence), to better emphasize the stages of updating. P'(X) is the value of P(X) after the
first stage of updating, whereas P”(X) is the valuc after the second stage.
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value of P'(X,) is given by:

Pl(Xa) B P(Xa)
P(Xa)

P'(Xy) = P(Xp|Xa) + [P(X3]Xa) — P(X3)]

where P(X,) is the probability of X, before the update.
Following a — b in the backward propagation direction and assuming a decrease

P(Xy) — P'(X,) = &y, the updating formula is:

P'(Xa|2Xy) = P(Xa|2Xy) + [P(Xe) — P(Xa|=X)]

This interpolation method is a simple approximation of P(X|E1, Es), where E; —
X and Ey — E; are directly linked, but F, — X are not. Its validity for the field
of CAT is a question we investigate empirically in this study. More details about the

interpolation method can be found in Giarratano and Riley (1998).

Summary

POKS is a specific Bayesian modeling approach which makes several strong assump-
tions to reduce the complexity in Bayesian network modeling. POKS allows the the
Bayesian modeling of item-to-item knowledge structure in accordance to the Theory
of Knowledge Spaces (Falmagne et al., 1990). One of the purposes of this study is to
explore the validity and performance of POKS modeling framework under the strong
assumptions imposed.

The network of POKS is defined solely over the test items and no concepts nodes
are included. Imposing this rule relieves POKS from any knowledge engineering
effort to construct the network and thus makes the approach more comparable to IRT

than other Bayesian modeling approaches that would require a knowledge engineering
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step. The same data can be used for both POKS and IRT approaches without any
manipulation or transformation, thus allowing a comparison of the two approaches
on an equal basis.

The POKS network induction algorithm relies on a pairwise analysis of item-
to-item relationships. Such analysis attempts to identify the order in which people
master knowledge items. It is inspired from the Knowledge Spaces Theory which
states that skill acquisition order can be modeled by an AND/OR graph (Falmagne
et al., 1990). For our purpose, we impose a stronger assumption that the skill acqui-
sition order can be modeled by an directed acyclic graph (DAG). This assumption
allows us to limit POKS network induction algorithm only to pairwise analysis.

Given the assumption of independence in evidences, the probability update of
evidence can be written in posterior odds. This allows POKS to use Bayes’ Theorem in
its own implementation based on odds and likelihood algebra. This implementation of
updating evidence is consistent with the Bayesian posterior probability computation
in single layered networks and corresponds to the posterior probability update.

So far, we have explained IRT in Section 2.3.4 and POKS in this section. The
next section will explore the simulation experiments and their results of comparison

between IRT and POKS approaches.



CHAPTER 5

ITEM SELECTION

As mentioned in Section 1.4, there is a common concern to IRT and POKS in
adaptive testing, i.e. item selection. In the CAT context, the goal of item selection is,
to use the least number of items to identify the examinee’s ability level with maximum
precision, or in other words, choosing the most informative item.

This section describes two folds of item selection methods used in this study,

namely Fisher information approach and information gain approach.

5.1 Fisher Information

In Section 3.6, the IRT test information (Equation 3.29) is defined as

& POF
10=2 5500

Since the right-hand side of above equation is a sum, it can be decomposed into the
contribution of each item to the amount of test information.
The item information function is the amount of information contributed by an

individual item. It is given by
(5.1)

The item information function is also called Fisher information function due to their

equivalence in IRT context (see Section 7.2).



The equations of Fisher information for logistic ICC models are

L(9) = P(8)Q:(9) 1-PL or Rasch (5.2)
Ii(0) = (Dai)zpi(e)Qi(a) 2-PL (5.3)
L(0) = (Dai)Z?;((g)) [P ﬁ;c} 3PL (5.4)

From Equation 5.4, it is relatively easy to infer the role of the b;, a;, and ¢;
parameter in the Fisher information function: (a) information is higher when the b;
value is close to € than when the b; value is far from 0; (b) information is generally
higher when the a; parameter is high; and (c) information is increases as the ¢
parameter goes to zero.

Under all three logistic models, the I;(0) curve is always bell-shaped, with its
maximum at 8,,,.. For 1-PL and 2-PL models, 6,,,. = b; exactly; and for 3-PL
modle, 0,0 = b; + a% log [1—@/—?——80’} In all cases, the amount of information can be
quite small for the ability levels that deviate considerably from 8,,,,. This indicates
that the estimation of ability is better when the difficulty of the item 8,,,, is matched
to the examinee’s ability.

For a test consisting of n items, the test information is the sum of Fisher informa-
tion of every item. Selecting the item with maximum Fisher information maximizes
the contribution to the test information. The usefulness of this is readily understood
if an examinee’s ability estimate is wanted, especially when the maximum likelihood
estimator (MLE) is used. In MLE case, the standard error of 0 is estimated as
SE@G) = +/Var() =1/ \/Té) (see Section 7.2). Therefore, by selecting items hav-
ing maximum information, the contribution to the decrease of the standard error is
the greatest. Furthermore, from the definition of Equation A.6, it can be seen that

maximizing the information is the same as maximizing the contribution of an item



o8

to the expected relative rate of change in the likelihood function. The greater this
change rate at given 8, the better it can be distinguished from points near to this
value, and the better this value can be estimated (see Chang & Ying, 1996).

In Section 6.7, we will discuss the two variants of Fisher information based item
selection methods. Ome is to select the item having the largest item information
at current ability estimate. The other is to select the item having the largest item
information at predefined cut point on ability scale which is tailored to the two-

category classification problem (e.g. pass/fail).

5.2 Information Gain

The second approach to item selection we investigate is the information gain approach.
The principle of this approach is to choose the item that will maximize the expected
reduction of entropy of the test. This is explained below.

The entropy of a single item X; is defined as:
H(X;) = —[P(X;)log(P(X;)) + Q(X;) log(Q(X5))] (5.5)

where Q(X) = 1 — P(X). The entropy of the whole test is the sum of all individual

item’s entropy:

k
Hr =Y H(X) (5.6)

where the subscript 17" in Hp indicate it is the entropy of the test which contains k
items.
If all item probabilities are close 0 or 1, the value of Hy will be small and there will

be little uncertainty about the examinee’s ability. It follows that we minimize this



uncertainty by choosing the item that maximizes the difference between the current
test entropy (i.e. Hr) and the entropy after the response of that item is observed (i.e.
H.). Since H7 is unknown in the case where the response to item ¢ is not determined.
Thus, the expected value of the whole test entropy after a response to item X; is given

instead:
Ei(Hy) = P(X))Hp(X; = 1) + Q(X;) Hp(X; = 0) (5.7)

where HL(X; = 1) is the entropy after the examinee answers correctly to item ¢, and
Hi(X; = 0) is the entropy after a wrong answer. We then look for the item that will

have the maximum difference:

mex [Hy — E(Hy) (5.8)

5.3 Computing the Fisher Information with POKS

The Fisher information defined in Equation 5.1 is defined with respect to the value of
6 in IRT ability level scale. In order to apply Fisher information methods to POKS,
POKS must provide an assessment of examinee in IRT’s ability level scale, i.e. 6.
In POKS, the equivalent 6 is computed from a measure of the estimated mastery
level. That measure, m, corresponds to average probability over all k items:
> P(X:)

Note that we could also have used the expected item success rate as an alterna-
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tive!?, but the current measure is more sensitive as it discriminates between an item
with a probability of success .49 and another with probability .01.

The value of m varies on a scale [0, 1], whereas 6 in IRT is on the scale [—o0, +00].
To bring m onto the 8 scale, we apply the logit transformation, with item parameters

a and b that are commonly shared with IRT:

0, = logit(m)/a+ b= [log (%)] Ja+b (5.10)

Therefore, the above 8,, obtained from POKS can be viewed as a transformed “equiv-
alent” ability level value in genuine IRT. By taking this conceptual equivalence in
ability level, POKS is entitled to use IRT’s exclusive formula of item information

function, e.g. for 2-PL model, the Fisher information for 6, is
Li(6m) = (Da;)* P(6)(1 = P(6,,))

where a; is the discrimination parameter of item 7 and D is constant 1.7 (see original

item information function, Equation 5.3).

Summary

Fisher information function, or item information function, is related to test informa-
tion function in IRT. Choosing the item with maximum Fisher information maximizes
the contribution to the test information, which in turn leads to more precise ability

estimate in the MLE case.

BFor k items, the expected success rate r is defined as

> di

Tk

where d; = 1 for P(X;) > 0.5, and d; = 0 otherwise.
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Information gain item selection aims at bringing down the test entropy which
eliminates the uncertainty of ability estimate in test process. The item favored by
the information gain approach is the one that maximizes the expected reduction of
entropy of the test.

Since POKS has no internal index comparable to IRT’s ability level 8, it cannot
apply the Fisher information approach directly. A special treatment is introduced to

create equivalent 6, for POKS to ease the use of Fisher information approach with

POKS.
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CHAPTER 6

SIMULATION AND RESULTS

In the previous sections, we explain the IRT and POKS student modeling ap-
proaches. This section compares the POKS approach (see Section 3.6) with the IRT-
2PL approach (see Section 2.3.4) and reports the corresponding results of the two
approaches. For the purpose of this study, the POKS network is defined solely over
the test items and no concepts nodes are included. Imposing this requirement not
only relieves us from any knowledge engineering effort to construct the network but
makes this POKS approach more comparable to IRT than other Bayesian modeling
approaches that would require a knowledge engineering step. The same data can be
used for both approaches, thus allowing a comparison on an equal basis. A small
simulation study was completed. The analysis was conducted on two empirical data
sets. All data set consisted of dichotomous item. 2-PL ICC model was used in each

set.

6.1 Experimental Evaluation of The Approaches

For the two category classification problem (e.g. pass/fail determination), the general

goals of assessing any approach are,

e Effectiveness - Does the approach always yield the results that is better than
number-right interpolation? and how much is the margin? The number-right
interpolation is the common way of inferring the score, for example, an examinee
succeed 2 out of 4 questions administered at the moment, suppose the total

number of items in the test is 20, so the number-right interpolation of score is
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2/4 x 20 = 10 . The results from number-right interpolation usually serves as
the baseline in this comparison study, we generally expect that any inference
strategy (POKS or IRT-2PL) would yield better results than crude number-

right interpolation approaches.

¢ Efficiency - How fast the approach yields the pass/fail decision with some confi-
dence? e.g. how many items (or what is the proportion of total number of items)
are required to determine an examinee’s pass/fail score with the confidence that

such decision will be correct 90% of times.

¢ Generality and robustness - Can the approach achieve effectiveness and effi-
ciency goals under different data sets, e.g. large vs. small items number, large

vs. small examinees number, or even ill-designed test?
Moreover, we designed the comparison schemes with the following concerns,

e N — 1 principle. Given the N examinees’ responses data, N — 1 examinees’
responses are used for building the model (c.f. training and validation); the
responses of the remaining one examinee are used for simulation and analysis.
This rule prevents the creation of a bias by using the same data for validation

and training (see Section 6.2).

¢ Various knowledge or ability domains of interests in the test. For example,
two sets of empirical test data are explored, UNIX knowledge test and French

language proficiency test.

e Distinct passing score (e.g. 50%, 60%, 70%) of determination criteria in pass/fail

classification.

14The test score used in this comparison study is defined as the number of correctly answered
items.
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e [tem selection strategies. Several item selection procedures are investigated,
namely the information gain approach and the Fisher information approach (see
Section 6.7). A random item selection procedure is also reported for benchmark

comparison.

6.2 Methodology

The performance comparison rests on the simulation of the question answering process.
For each examinee, we simulate the adaptive questioning process. The answers given
by the examinee during the simulation are based on the actual answers collected in
the real test. After each item is administered, an overall estimated score S is com-
puted from POKS and IRT-2PL approaches. This estimated score S changes during
the test process and finally approaches the examinee’s true score S;. We monitor this
S after every item administered in the test simulation, and compared it with the true
score S;.

As mentioned before, any type of score used in this comparison study is defined
based on the concept of number-right score. Therefore, the true score S; of an exam-

inee is computed from his actual responses in the test data. It is defined as

n
D
1

n

St (6.1)

where z; = 1,0 is the response to item ¢, and n is the total number of items in the
test. The gap between estimated score S and true score S; is recorded for .

The estimated score S consists of two parts: the observed (responded) items and
the estimated items. The items already responded are assigned the observed values

(z;), whereas the remaining unobserved items take the expected score (£;).



The overall estimated score is thus a weighted sum of the observed scores from
responded items and expected scores from unobserved items. That is, if I is the set
of items responded and I, is the set of items unobserved, the examinee’s estimated
score, S, is:

in—FZ:@-

z;€le SI)]'EIT

S = (6.2)

n

where x; is 1 if the corresponding response to item ¢ is a success and 0 otherwise,
and 2; is 1 if the estimated probability of success P(x; = 1) (with the respective
method used, POKS or IRT-2PL) is above 0.5 and 0 otherwise. Recall that in the
IRT 2-PL model, the probability of success to an item is given by Equation 3.8 and
depends on the current ability estimate 8, whereas in POKS, it is computed through
the propagation of evidence as explained in section Section 3.6.

During the simulation process, an examinee is classified as master if his estimated
score S is above a given cut score S.. This cut score S, is often expressed as a
percentage value, e.g. 60%. The classification decisions are recorded after every item
administered.

This simulation procedure results in a 100% correctly classified examinees after
all test items are observed. It rests on the fact that we do not know the actual ability
state of an examinee apart from the test results. Indeed, contrary to a frequently
used approach that consists in generating test response data cases from Monte Carlo
simulations, we use real data to validate the models. This procedure has the obvious
advantage of having good ecological external validity. However, it leaves us with
the epistemological position of having the test data as the sole indicator of examinee

ability. Performance results, then, should be interpreted as the ability of the models to
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predict examinee score for the given test. If we assume that a test is a true reflection
of ability, then we can extend the interpretation of the models’ performance as a

measure of their accuracy to predict examinee ability.

6.3 Test Data

The simulations are performed on two sets of data:

o UNIX test - a 34 items test of the knowledge of UNIX shell commands admin-

istered to 48 examinee,
¢ FLC test - a 160 items test of French language administered to 41 examinees.

The first test is taken from Desmarais et al. (1996) and it assesses a wide range
of knowledge of the UNIX commands, from the simple knowledge of ‘cd’ to change
directory, to the knowledge of specialized maintenance commands and data processing
(e.g. ‘awk’, ‘sed’). The second one is a test from Formation Linguistique Canada
(FLC). 1t is designed by linguistic professionals and covers a wide range of language
skills.

Mean scores for the UNIX and French language tests are respectively 53% and
57%, and mean standard deviation per examinee for both test is about 0.5. Figure 6.5
illustrates the dispersion of scores for each test.

A wide distribution of scores is necessary for the proper calibration of both POKS
and the IRT-2PL model. To avoid sampling bias error, all calibrations of the models’s
parameters are done on N — 1 data cases: we remove from the data set the examinee
for which we conduct the simulation. As a result, simulations are conducted with
parameters calibrated from 47 data cases for the UNIX test and 40 data cases for the

French language test.
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Histogram of Unix test examinee scores
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Figure 6.5: Histogram of examinee scores for each test

6.4 Parameters Estimation

The discrimination and difficulty parameters a and b were estimated with a maximum
log-likelihood estimator package of the R application (Venables, Smith, & the R
Development Core Team, 2004) over the two data sets. These same parameters
are shared by the IRT-2PL and POKS approaches. They are used for computing
P(u; = 1|0) in IRT 2-PL model, and for computing the Fisher information for the
choice of the next item with both the POKS and the IRT-2PL approaches.

The program of IRT ability estimation § is written in C++ and takes advan-
tage of the availability of C libraries of numeric routines for equation solving (Press,
Teukolsky, Vetterling, & Flannery, 1992).

It is noteworthy to mention our attempt of using 3-PL model in item parameter
estimation. We met serious divergence problem for 3-PL model (see Section 3.5.2)
in numeric computing process. Therefore, we use 2-PL model in this study. We also

used some means to bound ability and item parameters within a certain range, so

that it limits the chance of occurence for Heywood case as mentioned in Section 3.5.2.
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According to Baker (1992), MLE yields better results when the size of sam-
ple data set (both the number of examinees and questions) is relatively large (see
Section 3.5.2). Due to the lack of big sample size in this study, the quality of item
parameter estimation may be compromised. However, it cannot be verified at present.
The replication of sample data, e.g. duplicating 48 examinees’ responses in the UNIX
test and making a forged data set of 96 examinees, makes no contribution to the
improvement of MLE results. Because the values of parameters that fit into the MLE

equations established from 48 examinees also fit those equations from 96 examinees.

6.5 Graph Structures and Statistics

Statistics on the graph structures inferred are given in Table 6.2. The number of
relations reported represent the average over the 48 and 41 networks that were used
for the simulations (one per simulation to avoid the over-sampling bias). Note that
symmetric relations are in fact two directed relations between a pair of nodes (dividing
the numbers by two gives the actual individual symmetric relations). Note also that,
when counting transitive relations, groups of nodes linked through symmetric relations
are merged into one single node'®, to avoid cycling, and that the numbers represent
the transitive relations actually induced by the algorithm (not the relations that can
be derived through transitivity).

Table 6.2: Graph statistics averaged over all N structures
UNIX graph French language graph

Total number of relations 587 1160
Symmetric relations 252 131
Transitive relations 229 668
Q. 0.25 0.10
De 0.50 0.50

I5Merging nodes of symmetric relations into one is only for the purpose of counting transitive
relations and not for performing inferences.
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The minimal conditional probability, p., for both tests networks is the same, 0.5.
The values for a. and a; are 0.25 for the UNIX data set and 0.10 for the French one.
The choice of o, = 0.10 for the French language test proved to be more reliable during
the preliminary testing. However, values of a, ranging from 0.2 to 0.5 showed little
effect on the results for the UNIX data set, but performance degradation started to

appear around o, = 0.1.

6.6 Computational Resources

Computational resources for building the graph structure and performing inferences
is often an issue for operational systems and thus we report some indicators here.
For our test data, time for constructing a graph structure with the Unix and French
language data set is very fast: less than 10ms on a standard 1.5Ghz PC. Inferences
for CAT is also fast. We find that a full cycle involving (1) the update of item
probabilities and (2) determining the next question to ask, varies from 0.03ms for
the UNIX test with the Fisher information condition, to a much longer 106ms for
the French language test under the information gain condition. The information gain
condition is much slower because it involves simulating correct and wrong responses
to every other test item to find the expected entropy. Moreover, the high number of
connections in the French language network significantly affects the time to compute
the entropies for the information gain technique.

We implemented the IRT-2PL framework based on Birnbaum’s paradigm of exam-
inee ability and item parameters estimation (Baker, 1992). The numeric computing
program was written in C/C++ and the R language. We used a number of numerical
programming techniques to improve the quality of model fit. The item parameter

estimation for 2-PL IRT is a relative heavy computing. It is implemented in R lan-
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guage (Venables et al., 2004). Since the program emits many debugging information
in execution, the performance of item parameter estimation part has not been mea-
sured solely. The speed of item parameter estimation is not a big issue in this study
because it is outside the CAT loop where fast responsiveness is one of the critical con-
straints. The ability estimation for 2-PL IRT is implemented in C/C++ to explore
its speed limit since the ability estimation process is inside the CAT loop. The time
of computing ability increases as more item responses are observed. A rough estimate
of ability estimation time on 866 M hz PC is, 1~2s for 34 items in UNIX test data,

and 3~6s for 160 items in French langnage test data.

6.7 Item Selection

It is essential to select the next item presented to an examinee with regard to his
already observed performance. Many methods have been proposed for this task. IRT
generally uses item information/Fisher information as a criterion in item selection.
Eggen (1998) investigated the impact of different item selection strategies on termi-
nation condition in IRT context. POKS uses an entropy based item selection method
described in Section 5.2. Both Fisher information based and entropy based item
selection methods are experimented in our simulation.

Item selection methods based on IRT Fisher information have strong relation to
optimal estimate (see Section 7.2 and Section 7.2). The most popular item selection
method based on Fisher information in IRT is to select the item that has maximum
item information function/Fisher information I;(#) at current ability estimate 6.

As estimating current ability level is a nontrivial task in CAT, for those circum-
stances that only fail/pass decision is involved, it is preferable to have a speedy item

selection method that does not rely on the ability estimate every time. Spray and
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Reckase (1994) have shown that in a classification problem with two categories (e.g.
pass/fail) where SPRT procedure is usually being used (Wald, 1947), it is more ef-
ficient to select the items which have maximum information at a fixed cut point 8,
rather than at current ability estimate.

In the comparison of IRT 2-PL and POKS models, we experimented two Fisher in-
formation based item selection methods, i.e. maximum Fisher information at current
ability estimate (F1), and maximum Fisher information at fixed cut point (F2).

The two Fisher information based item selection methods (F1 and F2) performed
roughly equally well for the IRT 2-PL model in the simulation. Therefore, the preva-
lent one, Fisher information at current ability estimate (F1) is reported in this study.
For the fairness of comparison, POKS also uses the same one (F1). The technique of
applying Fisher information to POKS is described in Section 5.2.

An alternative to IRT Fisher information method is to base item selection process
on the information gain. The principle of this methods is to choose the item that will
maximize the expected reduction of entropy of the test. The procedure is described
in Section 5.2.

Contrary to the success of adapting IRT’s Fisher information based item selection
methods into POKS, the idea of migrating entropy based item selection methods into
IRT met some difficulties in our study. The major problem is the the computational
resources required for computing every expected test entropy E;(H}) among all the
item candidates. The process of computing expected test entropy E;(H}) requires two
new estimates of ability level (see Section 5.2). One is the new ability estimate when
the response to this item candidate is 1 (success), and the other for 0 (fail). Since the
ability estimation process for IRT (root finding process) is relatively expensive (see
Section 6.6), so does the case of computing E;(H%).

Due to the fact that the number of item candidates that need to be evaluated
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decreases in the test, the workload of selecting an item in the beginning of a test is
heavier than that near the end of a test. The latency due to the intensive workload
of item selection in the beginning of a test may become an obstacle to the use of
interactive application in practice. As a result, we did not report entropy based item
selection method for IRT-2PL approach in this study.

A Random item selection method is also investigated in our study. Any measure-
ment for random item selection method, e.g. classification accuracy, is the average

one over a bunch of simulation runs.

6.8 Performance Metrics

Measuring the performance of each approach is based on a simple metric: the pro-
portion of correctly classified examinees after each number of responses to test items.
Classification of a single examinee is determined by comparing the examinee’s esti-
mated score S (see Equation 6.2) with the passing score S,.

The percentage of correctly classified examinees is reported as a function of the
number of test item responses given. Figure 6.6 illustrates an example of a perfor-
mance graph. The curve starts at 0 item, i.e. before any items are given, at which
point we use the sample average to initialize the probabilities of each test item. Each
examinee will thus start with an estimated 6 = Z, the sample average score in percent-
age points. If the sample average is above 0., all examinees will be considered master,
otherwise they are considered non-master. As a consequence, the performance at 0th
item generally starts around 50% when the cut score is around the sample average,
and gradually reaches 100% at the end of the test when all items are observed. As
the cut score departs from the average, the 0th item initial performance (or “blind

score”) increases and eventually reaches 100% if everyone is above or below this score
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in the sample. For example, at a cut score of 80% this initial score is 40/42 for the
French language test because only two examinees score above this level and we start

with the estimate that everyone is a non master.

Performance graph regions
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Figure 6.6: Example of metrics G

The diagonal line in Figure 6.6 represents a baseline performance used in measur-
ing a global score, G (see below). Thus, region C of Figure 6.6 represents a linear
approximation of the “given facts” (i.e. the proportion of examinees that are are
correctly classified due to gradual observation of responses of test items), region B
represents the “correct inferences” (i.e. the proportion of examinees correctly classi-
fied by the inference method), and region A represents “wrong inferences” (i.e. the
proportion that are still incorrectly classified).

Besides graphically reporting the classification results, a single scalar metric, G,

is defined for characterizing the performance over a complete simulation run. It
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corresponds to the ratio of surfaces B/(A + B) in Figure 6.6 and is computed by:

i=1 er

Ci — Cy

where n is the number of examinees, k the number of items, C; is the number of
correctly classified examinees after ¢ number of item responses (the line with black
circles), and C¢; the expected number of examinees correctly classified by sole obser-
vation of test items (i.e. the diagonal line in the performance figures). G values can

range from to 1, where C,g is the number of correctly classified exam-

—k
2n/[nCeo — 1}
inees before any response is given). A value of 1 represents a perfect classification
throughout the simulation, a value of 0 indicates no gain over observation only, and

a negative value indicates a worst classification than that obtained by combining the

0 item initial classification with the given responses.

6.9 Results
6.9.1 Simulations at 8, = 60%

The simulation results for the cut score 6, = 60% are summarized in Figure 6.7
and Figure 6.8 for the UNIX and French Language tests. They show the number
of correctly classified examinees as a function of the number of items asked. For
better visibility, the French language test data points are plotted every 4 items. Both
the information gain and the Fisher Information item selection methods are reported
for the POKS model. However, for IRT-2PL approach, only the Fisher Information
function is given because of limitations with the IRT simulation program we are using
(see Section 6.7).

The simulation shows that both POKS and IRT-2PL approaches yield relatively



good classification after only a few item responses, especially considering the low
number of data cases used for calibration. In the UNIX test, all approaches reach
more than 90% correctly classified between 5 and 10 item responses. However, for the
French language test, only the POKS information gain and POKS Fisher Information
approaches stays above 90% correct classification after about 20 items, whereas the
IRT approach requires about half of the 160 test items to reach and stay above the
90% score. At this 60% passing score, we can conclude that the POKS Information
gain approach performs better in general than the two others but, as we see later,

this advantage is not maintained for all different cut scores.
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Figure 6.7: Classification accuracy of UNIX test

6.9.2 Performance under different 4, and item selection strategies

To gain an idea of the general performance of POKS under different conditions, we

investigate the following variations:
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Figure 6.8: Classification accuracy of French language test
e Different cut score, from 50% to 70%%,
e Item selection strategies, including a random selection of items,

e Two different values of the o, and «; parameters for inequalities Equation 4.2
and Equation 4.3 (we set o = a, = «;). One set at a = 0.15 for all conditions,

and another one tailored for each test.

Table 6.3 summarizes the results of the simulations under these different condi-
tions. The random selection represents the average of 9 simulation runs for each cut
score. We use the G metric for reporting the performance of a whole simulation, from

the first to the last test item, into a single scalar value.

8Scores above 70% and below 50% arc not reported because the large majority of examinecs are
correctly classified initially (as one can tell from Figure 6.5) and little performance gain is possible
(at least for the French test). Reporting scalar values within these ranges becomes misleading.
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Table 6.3: Performance comparison of the G metric under different conditions of cut
cores #,. and POKS « values.

IRT POKS
g, Fisher Fisher Information Random 95%
information information Gain confidence interval

UNIX test a=0.25 «o=0.15 «a=0.25 «=0.15 a=0.25
50% 0.93 0.85 0.89 0.86 0.84 0.75(+4.4)
60% 0.81 0.92 0.89 0.86 0.84 0.77(+4.8)
0% 0.75 0.80 0.81 0.68 0.67 0.50(£7.1)
average 0.83 0.86 0.86 0.80 0.78 0.67(£7.1)
French test a=0.10 «a=0.15 a=0.10 «a=0.15 a=0.10
50% 0.81 0.72 0.80 0.80 0.85 0.64(£2.0)
60% 0.68 0.78 0.79 0.74 0.79 0.57(£5.7)
70% 0.69 0.60 0.60 0.83 0.74 0.48(£4.9)
average 0.73 0.70 0.73 0.79 0.79 0.54(£7.1)

Three item selection techniques are reported for the POKS approach (information gain,
Fisher information, and random item selection with a 95% confidence interval), whereas
only the Fisher information technique is reported for the IRT framework, which is the most
commonly used.

The G metric at the 60% level reflects that POKS has a slight advantage over IRT
and that all approaches perform better for the UNIX test than the French language
test. However, the POKS advantage is not systematic for all cut scores and across
the two item selection techniques. The averages of cut scores across the tests suggest
a relatively similar performance between POKS and the IRT model. The average
score advantage is inverted between POKS Fisher information and POKS information
gain, but exploration with different statistical parameters for the statistical tests of
Equation 4.2 and Equation 4.2 (not reported here) indicates that this inversion is
not systematic. All methods perform better than a random selection of items, as
expected.

There is a noticeable decrease of performance for POKS at the 70% cut score

where the Fisher information method score drops to 60% for the French test, and
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also drops for the UNIX test, but this time over the information gain method. This
suggests that POKS may suffer weaknesses at boundary conditions.We link these

results to a known problem with POKS that is further discussed in Section 7.1.3

6.9.3 Question predictive accuracy

The comparison of IRT and POKS is also conducted at the question level. In the
previous sections, we assessed how accurate each method is at classifying examinees
as master or non master according to some passing score. The question predictive
evaluation is a more fine grained assessment of the ability of each method to predict
the outcome of each individual question item. In principle, the ability of an approach
to predict individual item outcome offers a means for detailed student assessment,
provided that individual skills and concepts can be related to specific items.

The measure for the question accuracy score is relatively simple. It consists in
the ratio of correctly predicted item outcome and it is reported as a function of the
number of items administered. For both methods, the probability of success of an
item, P(X;), is continuously reassessed after each item posed. If that probability is
greater than 0.5, then the predicted outcome is for that item is a correct response,
otherwise it is an incorrect response. Predicted responses are then compared with real
responses for measuring their accuracy. Once an item is administered, the predictive
accuracy score is considered 1 for that item and, as a consequence, the question
predictive ratio always reaches 1.0 after all items are administered. All items are
treated with equal weights.

Figure 6.9 and Figure 6.10 report the question predictive accuracy score for both
tests. Only POKS information gain approach was investigated for this experiment.
In addition to the two approaches, IRT-2PL and POKS, a third line is also displayed,

“Fixed”. It represents the score for the simple method of choosing the most uncertain



79

Question predictive accuracy - Unix test
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Figure 6.9: Question predictive accuracy of UNIX test

item remaining, i.e. the item whose sampled success ratio (the percentage of exami-
nees that succeeded on this item) closest to 0.5. This method is non adaptive: The
sequence of items is fixed for all examinees. It serves as a baseline comparison. We
note that the IRT approach starts at a lower score than the other two. This is due
to the fact that the items probabilities, P(X;), is computed from the initial § and
that value turns out to be less accurate than taking the initial probabilities calibrated
from the sample.

The standard deviations of the question predictive accuracy ratio is given in figure
Figure 6.11. They are also reported as a function of the number of items administered
and for the three corresponding curves of Figure 6.9 and Figure 6.10.

The obvious finding is that POKS clearly outperforms IRT in the French language

test, whose performance does not even match that of the fixed sequence method.
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Question predictive accuracy - French test
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Figure 6.10: Question predictive accuracy of French language test

However, it is not significantly better than the fixed sequence one. For the UNIX test,
POKS advantage over IRT is only apparent before the 10th item, but it does perform
well above the fixed sequence, contrary to the French test. We also note a slight
but systematic decrease across both tests of POKS performance after half (UNIX
test) or two thirds (French test) of items observed. We return to this observation in
Section 7.1.3.

These results confirm that the French test does not lend itself as well to adaptive
knowledge assessment as does the UNIX test. This could be in part due to the smaller
sample size (41 instead of 48 for the UNIX test), but it is also very likely due to the
sampling distribution that is not as wide as UNIX sample (see Figure 6.5). The

wider is the range of abilities, the easier it is to assess someone’s knowledge from that
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sample!”.

The low performance of IRT for the French test is not necessarily a surprise since
IRT never claims to lend itself to fine grained and multidimensional skill assessment.
However, it is a surprise that it can provide a good performance for the UNIX test,
possibly because that test is more unidimensional than the French test, and also be-
cause the item success ratio distribution has a §vider range. Obviously, an interesting
followup would be to verify if a MIRT approach could yield better results for that
test.

Nevertheless, the comparison does demonstrate that POKS has the potential of
providing more fine grained assessment, if we assume that question predictive ac-
curacy is more fine grained. For example, by segmenting tests items according to
different skills, then individual question item prediction could provide useful infor-
mation on individual skills. More investigation is required to confirm this hypothesis

but, this is an early indication that supports it.

YFor example, a sample whose test score varies only within 5% would be very insufficient since
most people are of the same ability and even the test prediction itself may not be that accurate.
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Figure 6.11: Standard deviations of each test as a function of the number of test item

administered
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CHAPTER 7

DISCUSSION AND CONCLUSION

7.1 Discussion

The comparison of the POKS approach with the IRT-2PL one shows that they both
can perform correct classification of examinees under different tests and passing scores,
although their performance differs according to that passing score. However, their
ability to predict individual question item outcome varies considerably between them-
selves and also between tests. POKS can predict item outcome well above that of
the fixed sequence performance for the UNIX test, but only at about the same level
for the French test. The performance of IRT is distinctively lower for IRT over both
test, but it does perform as well as POKS for the UNIX test after the tenth question.

Given that the POKS approach is computationally much simpler than the IRT
approach, which relies on maximum-likelihood estimation techniques that can prove
relatively complex for IRT (see Baker (1992) and Section 2.3.4), these results show
the POKS approach has a good potential.

However, beyond these findings, a number of issues remain. We discuss some of

the major ones below.

7.1.1 Including concepts in POKS structures

Estimating the mastery of concepts is essential to provide the fine grained knowledge
assessment that many learning environments often require. The POKS approach

must provide some means of assessing concepts.
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Like other graph modeling techniques, we can include concepts and skills within
POKS structures. However, the manner in which items should be linked to con-
cepts, and how concepts should be linked among themselves is an open question.
Numerous schemes have been proposed for linking items to concepts, such as leaky-
AND/OR gates (Martin & Vanlehn, 1995; Conati et al., 2002), dynamic Bayesian
networks(Mayo & Mitrovic, 2001), weighted means (Milldn & Pérez-de-la-Cruz, 2002),
or BN organized in a number of topologies as can be found in Vomlel (2004b).

For POKS structures, one possibility is to keep the whole structure uniform and
link concepts with surmise relations as is done with items POKS the and knowledge
structures framework (Falmagne et al., 1990). For example, mastery of a concept
by examinees can be independently assessed and the induction of the structure can
proceed in much the same process as that described in Section 4.3. Preliminary ex-
ploration of this simple scheme seems to suggest that the results are not very positive
and further investigation is necessary to confirm this hypothesis and determine why.

Another approach was recently explored using the data from Vomlel (2004b) (see
Section 2.2) and deriving concept mastery with a single layered network comprising
items as predictors (Desmarais & Meshkinfam, 2005; Meshkinfam, 2005). Concepts
had already been assessed independently. The POKS updating algorithm serves to
determine the probability of mastery of each item as items are answered, and the
new probabilities are, in turn, fed to logistic regression models to determine concept
mastery. The approach is compared to Vomlel’s own predictions. The results show
that although POKS is better than the BN constructed by Vomlel for predicting
answers to question items, it is less accurate to predict concept mastery.

Finally, the simplest way of including concepts into POKS is to use the traditional
breakdown that teachers do. Subject matters are divided into a hierarchy of more

and more specific topics. Items are the leaves of this hierarchy and a weighted mean



is used to estimate mastery of the next level down. Note that the structure does not
need to be a pure hierarchy and that a single item can belong to many concept/skill
nodes. Exams are often structured this way. The accuracy of this method is directly
linked to the accuracy of the leave nodes mastery estimates (test items) and the
validity of the weighted means. This approach may not have the ability to model
misconceptions and non linear combinations of items and concepts, but it has the
quality of being universally used in schools and understood by everyone.
Furthermore, that approach avoids problem of estimating concepts independently
for constructing a graph model and for calibrating conditional probabilities. In fact,
in our view, that problem plagues graph models in general. Modeling with hidden
nodes is very difficult to envision by non statisticians. The multidimentional-IRT

model is also subject to this issue.

7.1.2 Automated learning constraint

POKS is an algorithmic learning/calibration approach. Structures such as Figure 4.4
are built automatically. It shares the same advantages as IRT in that respect. How-
ever, as a graphical modeling approach, it also has the expressiveness of these models,
namely that items can be aggregated into concepts and further aggregated into hier-
archies of concepts. Techniques such as those of VanLehn, Niu, Siler, and Gertner
(1998) can be used for modeling the “concept” part of the network that stands above
the test items. Alternatively, a concept can be defined as a function of the proba-
bility of mastery of a set of items. For example, it can be a weighted average of the
probability of set of items which composes a concept, as (Milldn & Pérez-de-la-Cruz,

2002) did.
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7.1.3 POKS’s sensitivity to noise

One of the critical issue with the POKS approach is the problem of correcting errors
due to noise. This is a direct consequence of pruning the bi-directionality of posterior
updates, and that can result in nodes having no incoming, or outgoing links. For
example, a difficult item can often have many outgoing links, but no incoming links
(i.e. no other item’s success significantly increases its probability). It follows that
this node’s probability can only decrease according to POKS updating scheme. If, for
some reason, an expert misses an easy item, these items with no incoming links (the
more difficult ones in general) will see their probability decrease with no chance of
being raised later on, until they are directly observed. Over test with a large number
of items, such noisy answers are bound to happen and create these sticky errors. They
will also tend to affect more significantly the performance at the end of the test when
only a few items are not yet observed.

This weakness can explain the poor result found at the 70% cut score for the
French language test (see Table 6.3), as it is a relatively large test of 160 items. This
explanation is also consistent with the fact that, as the cut score nears the edges of
the examinees’s performance distributions (see Figure 6.5), small errors have more
weight on the G score and their weight increases as the test nears the end.

Moreover, it can also can explain the decrease in both tests for the question pre-
dictive experiment. We can see in Figure 6.9 and Figure 6.10 that the performance of
POKS decreases relative to the fixed sequence performance. The decrease is apparent
after a third (UNIX test) to two thirds (French test) when the POKS performance
drops below the fixed sequence performance. Again, this is consistent with the fact
that sticky errors will accumulate and more significantly affect the performance at

the end of a test.
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This is not an insurmountable problem, but it does involve developing some means
to avoid the accumulation of noise over items that are either very difficult or very

€asy.

7.2 Conclusion

POKS offers a fully algorithmic means of building the model and updating item
probabilities among themselves without requiring any knowledge engineering step.
Indeed, the specific POKS approach uses the same data as the IRT-2PL approach to
provide similar accuracy. It shows that a graphical modeling modeling approach such
as POKS can be induced from a small amount of test data to perform relatively accu-
rate examinee classification. This is an important feature from a practical perspective
since the technique can benefit to a large number of application contexts.

The graphical modeling approaches such as POKS or as Bayesian networks are
still in their infancy compared to the IRT techniques developed since the 1960s, and
their potential benefit remains relatively unexplored. However, applications of CAT
techniques to tutoring systems and to different learning environments are emerging.
The availability of simple and automated techniques that are both effective and ef-
ficient, relying on little data and allowing seamless updates of test content, will be
critical to their success in commercial applications.

Unlike the conventional use of IRT in CAT industry which usually have thousands
of examinees in sample data set, the IRT model (2-PL) used in this study is limited
to small sample data set. In the occasion where only limited sample data is available,
such as UNIX and French language test in this study, IRT is still a workable model.

However quality of item parameter estimation may be compromised.
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APPENDIX

A.1 Test Information Function and MLE Sample Variance

The test information function I(9) and MLE sample variance Var(6|6) share some

common ground which is

1 s 1
I(@) = m or VCLT(9|9) - m

There is a general theorem (see Lord, 1980, p. 70), under regularity condition,
satisfied here whenever the item parameters are known from previous testing: A
maximum likelihood estimator 6 of a parameter ¢ is asymptotically normally distrib-

uted with mean 6, (the unknown true parameter value) and variance

1
dlog L 2
o/,

where L = L(0) =[]} P,(0)“Q;(0)'~* is the likelihood function.

Var(0|0,) =

E

Where the item parameters are known, we have from Equation A.1 and Equation 3.25

2
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since F(u;|0,) = P, the expectation under the summation sign is covariance. Because
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of local independence, w; is distributed independently of ; for fixed 8. Consequently

the covariance is zero except when ¢ = 7, in which case it is covariance. Thus

n 72 n P/2

1 P,
~ = “—Var(uie,) = —=P;,Qso A2
Var(86,) 2 prgsVarvin.) 2 gt (A2

i=1 i=1

Dropping the subscript o, the formula for the asymptotic sampling variance of the

maximum likelihood estimator is thus

1
n P/2
< .0,

Var(6|0) =

1=

Thus the (asymptotic) test information function Equation 3.29 is the recipro-
cal of the asymptotic sample variance of maximum likelihood estimator of ability
Equation A.3:

_ 1B
- Var(4|6) N — P,Q

2

1(6) (A.4)

Theorem A.1 The information function for an unbiased (consistent) estimator of
ability is the reciprocal of the (asymptotic) sampling variance of the estimator. (see

Equation A.4)

Theorem A.2 The test information function 1(0) given by Equation A.4 is an upper
bound to the information that can be obtained by any method of scoring the test (see

proof at Lord, 1980, p. 71).

The importance of the test information function comes partly from the fact that
it provides an (attainable) upper limit to the information that can be obtained from

the test, no matter what method of scoring is used.
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A.2 TItem Information and Fisher Information

The item information in IRT is roughly the same as Fisher information, although the
originality of definitions of two information functions are different.

Fisher information is thought of as the amount of information that an observ-
able random variable X carries about an unobservable parameter ¢ upon which the
probability distribution of X depends.

Fisher information can be written as

IFisher(t) =LK H%logf(X“)} :I (A5)

where f(X]|t) is the probability density function of random variable X, and E[] is
the expectation operation.

In IRT, Fisher information for an item 7 is defined as

IFisher(e) = F

[%logl}(ui|ﬁ)] T (A.6)

where L(u;|0) = P;(0)“Q;(0)' ™% is likelihood function for single item,
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Substitute g—e—logL(uiW) with Equation 3.25, and let P, = P;(0), Q; =1 — P;:

IFishe'r (9) = L

[pesiu] |

(u; — PP
:E[ P.Q; ]
_ [a=P)P,  [O=-P)F)*
_[ 29 ]P“r[ 9 ]Q’
OB e o
= oy [1-PPR+0-RYQ]
e,
= oy @

PQ,

In the meantime, Birnbaum’s definition Equation 5.1 in IRT is,

Therefore, Irisher(0) = I;(6), and Fisher information function is equivalent to IRT

Birnbaum’s information function.

For 2-PL model, the Trigher(6) = I:(0) = (Das)* Pi(6)Q:(6).

A.3 Frequently Used Formulas for 3-PL and 2-PL models

A few useful formula involving the three-parameter logistic function Equation 3.6 are
recorded for convenience reference. Note that these formulas do not apply to the any
normal ogive function.
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(A.9)
(A.10)
(A.11)

(A.12)
(A.13)
(A.14)

(A.15)

For two-parameter (¢ = 0) logistic function, here are frequently referred formulas:
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