10 research outputs found

    Adjustment of Synchronization Stability of Dynamic Brain-Networks Based on Feature Fusion

    Get PDF
    When the brain is active, the neural activities of different regions are integrated on various spatial and temporal scales; this is termed the synchronization phenomenon in neurobiological theory. This synchronicity is also the main underlying mechanism for information integration and processing in the brain. Clinical medicine has found that some of the neurological diseases that are difficult to cure have deficiencies or abnormalities in the whole or local integration processes of the brain. By studying the synchronization capabilities of the brain-network, we can intensively describe and characterize both the state of the interactions between brain regions and their differences between people with a mental illness and a set of controls by measuring the rapid changes in brain activity in patients with psychiatric disorders and the strength and integrity of their entire brain network. This is significant for the study of mental illness. Because static brain network connection methods are unable to assess the dynamic interactions within the brain, we introduced the concepts of dynamics and variability in a constructed EEG brain functional network based on dynamic connections, and used it to analyze the variability in the time characteristics of the EEG functional network. We used the spectral features of the brain network to extract its synchronization features and used the synchronization features to describe the process of change and the differences in the brain network's synchronization ability between a group of patients and healthy controls during a working memory task. We propose a method based on the fusion of traditional features and spectral features to achieve an adjustment of the patient's brain network synchronization ability, so that its synchronization ability becomes consistent with that of healthy controls, theoretically achieving the purpose of the treatment of the diseases. Studying the stability of brain network synchronization can provide new insights into the pathogenic mechanism and cure of mental diseases and has a wide range of potential applications

    A Macaque Brain Extraction Model Based on U-Net Combined with Residual Structure

    No full text
    Accurately extracting brain tissue is a critical and primary step in brain neuroimaging research. Due to the differences in brain size and structure between humans and nonhuman primates, the performance of the existing tools for brain tissue extraction, working on macaque brain MRI, is constrained. A new transfer learning training strategy was utilized to address the limitations, such as insufficient training data and unsatisfactory model generalization ability, when deep neural networks processing the limited samples of macaque magnetic resonance imaging(MRI). First, the project combines two human brain MRI data modes to pre-train the neural network, in order to achieve faster training and more accurate brain extraction. Then, a residual network structure in the U-Net model was added, in order to propose a ResTLU-Net model that aims to improve the generalization ability of multiple research sites data. The results demonstrated that the ResTLU-Net, combined with the proposed transfer learning strategy, achieved comparable accuracy for the macaque brain MRI extraction tasks on different macaque brain MRI volumes that were produced by various medical centers. The mean Dice of the ResTLU-Net was 95.81% (no need for denoise and recorrect), and the method required only approximately 30–60 s for one extraction task on an NVIDIA 1660S GPU

    Individual-specific functional connectivity improves prediction of Alzheimer’s disease’s symptoms in elderly people regardless of APOE ε4 genotype

    No full text
    Abstract To date, reliable biomarkers remain unclear that could link functional connectivity to patients’ symptoms for detecting and predicting the process from normal aging to Alzheimer’s disease (AD) in elderly people with specific genotypes. To address this, individual-specific functional connectivity is constructed for elderly participants with/without APOE ε4 allele. Then, we utilize recursive feature selection-based machine learning to reveal individual brain-behavior relationships and to predict the symptom transition in different genotypes. Our findings reveal that compared with conventional atlas-based functional connectivity, individual-specific functional connectivity exhibits higher classification and prediction performance from normal aging to AD in both APOE ε4 groups, while no significant performance is detected when the data of two genotyping groups are combined. Furthermore, individual-specific between-network connectivity constitutes a major contributor to assessing cognitive symptoms. This study highlights the essential role of individual variation in cortical functional anatomy and the integration of brain and behavior in predicting individualized symptoms

    Fine-grained topography and modularity of the macaque frontal pole cortex revealed by anatomical connectivity profiles

    No full text
    The frontal pole cortex (FPC) plays key roles in various higher-order functions and is highly developed in non-human primates. An essential missing piece of information is the detailed anatomical connections for finer parcellation of the macaque FPC than provided by the previous tracer results. This is important for understanding the functional architecture of the cerebral cortex. Here, combining cross-validation and principal component analysis, we formed a tractography-based parcellation scheme that applied a machine learning algorithm to divide the macaque FPC (2 males and 6 females) into eight subareas using high-resolution diffusion magnetic resonance imaging with the 9.4T Bruker system, and then revealed their subregional connections. Furthermore, we applied improved hierarchical clustering to the obtained parcels to probe the modular structure of the subregions, and found that the dorsolateral FPC, which contains an extension to the medial FPC, was mainly connected to regions of the default-mode network. The ventral FPC was mainly involved in the social-interaction network and the dorsal FPC in the metacognitive network. These results enhance our understanding of the anatomy and circuitry of the macaque brain, and contribute to FPC-related clinical research

    Interspecies differences in the connectivity of ventral striatal components between humans and macaques

    No full text
    Although the evolutionarily conserved functions of the ventral striatal components have been used as a priori knowledge for further study, whether these functions are conserved between species remains unclear. In particular, whether macroscopic connectivity supports this given the disproportionate volumetric differences between species in the brain regions that project to the ventral striatum, including the prefrontal and limbic areas, has not been established In this study, the human and macaque striatum was first tractographically parcellated to define the ventral striatum and its two subregions, the nucleus accumbens (Acb)-like and the neurochemically unique domains of the Acb and putamen (NUDAPs)-like divisions. Our results revealed a similar topographical distribution of the connectivity-based ventral striatal components in the two primate brains. Successively, a set of targets was extracted to construct a connectivity fingerprint to characterize these parcellation results, enabling cross-species comparisons. Our results indicated that the connectivity fingerprints of the ventral striatum-like divisions were dissimilar in the two species. We localized this difference to specific targets to analyze possible interspecies functional modifications. Our results also revealed interspecies-convergent connectivity ratio fingerprints of the target group to these two ventral striatum-like subregions. This convergence may suggest synchronous connectional changes of these ventral striatal components during primate evolution

    Rostro-caudal organization of the human posterior superior temporal sulcus revealed by connectivity profiles

    No full text
    The posterior superior temporal sulcus (pSTS) plays an important role in biological motion perception but is also thought to be essential for speech and facial processing. However, although there are many previous investigations of distinct functional modules within the pSTS, the functional organization of the pSTS in its full functional heterogeneity has not yet been established. Here we applied a connectivity-based parcellation strategy to delineate the human pSTS subregions based on distinct anatomical connectivity profiles and divided it into rostral and caudal subregions using diffusion tensor imaging. Subsequent multimodal connection pattern analyses revealed distinct subregional connectivity profiles. From this we inferred that the two subregions are involved in distinct functional circuits, the language processing loop and the cognition attention network. These results indicate a convergent functional architecture of the pSTS that can be revealed based on different types of connectivity and is reflected in different functions and interactions. In addition, when the subregions were performing their processing in the different functional circuits, we found asymmetry in the bilateral pSTS. Our findings may improve the understanding of the functional organization of the pSTS and provide new insights into its interactions and integration of information at the subregional level

    Fluorescein Derivatives as Bifunctional Molecules for the Simultaneous Inhibiting and Labeling of FTO Protein

    No full text
    The FTO protein is unequivocally reported to play a critical role in human obesity and in the regulation of cellular levels of m<sup>6</sup>A modification, which makes FTO a significant and worthy subject of study. Here, we identified that fluorescein derivatives can selectively inhibit FTO demethylation, and the mechanisms behind these activities were elucidated after we determined the X-ray crystal structures of FTO/fluorescein and FTO/5-aminofluorescein. Furthermore, these inhibitors can also be applied to the direct labeling and enrichment of FTO protein combined with photoaffinity labeling assay
    corecore