80 research outputs found

    Reliability-based Probabilistic Network Pricing with Demand Uncertainty

    Get PDF
    The future energy system embraces growing flexible demand and generation, which bring large-scale uncertainties and challenges to current deterministic network pricing methods. This paper proposes a novel reliability-based probabilistic network pricing method considering demand uncertainty. Network reliability performance, including probabilistic contingency power flow (PCPF) and tolerance loss of load (TLoL), are used to assess the impact of demand uncertainty on actual network investment cost, where PCPF is formulated by the combined cumulant and series expansion. The tail value at risk (TVaR) is used to generate analytical solutions to determine network reinforcement horizons. Then, final network charges are calculated based on the core of the Long-run incremental cost (LRIC) algorithm. A 15-bus system is employed to demonstrate the proposed method. Results indicate that the pricing signal is sensitive to both demand uncertainty and network reliability, incentivising demand to reduce uncertainties. This is the first-ever network pricing method that determines network investment costs considering both supply reliability and demand uncertainties. It can guide better sitting and sizing of future flexible demand in distribution systems to minimise investment costs and reduce network charges, thus enabling a more efficient system planning and cheaper integration.</p

    Waiting Cost based Long-Run Network Investment Decision-making under Uncertainty

    Get PDF

    Optimal Borehole Energy Storage Charging Strategy in a Low Carbon Space Heat System

    Get PDF
    Domestic heating is the major demand of energy systems, which can bring significant uncertainties to system operation and shrink the security margin. From this aspect, the borehole system, as an interseasonal heating storage, can effectively utilize renewable energy to provide heating to ease the adverse impact from domestic heating. This paper proposes an optimal charging strategy for borehole thermal storage by harvesting energy from photovoltaic (PV) generation in a low-carbon space heating system. The system optimizes the heat injection generated by air source heat pump in the charging seasons to charge the borehole, which provides high inlet temperature for ground source heat pump to meet space heating demand in discharging seasons. The borehole is modeled by partial differential equations, solved by the finite-element method at both 2D and 3D for volume simulation. The pattern search optimization is used to resolve the model. The case study illustrates that with the optimal charging strategies, less heat flux injection can help the borehole to reach a higher temperature so that the heating system is more efficient compared with boilers. This paper can benefit communities with seasonable borehole storage to provide clean but low-cost heating and also maximize PV penetration.</p

    Network Pricing with Investment Waiting Cost based on Real Options under Uncertainties

    Get PDF

    A two-stage data-driven multi-energy management considering demand response

    Get PDF
    This paper proposes an innovative two-stage data-driven optimization framework for a multi-energy system. Enormous energy conversion technologies are incorporated in the system to enhance the overall energy utilization efficiency, i.e., combined heat and power, power-to-gas, gas furnace, and ground source heat pump. Furthermore, a demand response program is adopted for stimulating the load shift of customers. Accordingly, both the economic performance and system reliability can be improved. The endogenous solar generation brings about high uncertainty and variability, which affects the decision making of the system operator. Therefore, a two-stage data-driven distributionally robust optimization (TSDRO) method is utilized to capture the uncertainty. A tractable semidefinite programming reformulation is obtained based on the duality theory. Case studies are implemented to demonstrate the effectiveness of applying the TSDRO on energy management.</p

    Dynamic pricing for responsive demand to increase distribution network efficiency

    Get PDF
    This paper designs a novel dynamic tariff scheme for demand response (DR) by considering networks costs through balancing the trade-off between network investment costs and congestion costs. The objective is to actively engage customers in network planning and operation for reducing network costs and finally their electricity bills. System congestion costs are quantified according to generation and load curtailment by assessing their contribution to network congestion. Plus, network investment cost is quantified through examining the needed investment for resolving system congestion. Customers located at various might face the same energy signals but they are differentiated by network cost signals. Once customers conduct DR during system congested periods, the smaller savings from investment and congestion cost are considered as the economic singles for rewarding the response. The innovation is that the method translates network congestion/investment costs into tariffs, where current research is mainly focused on linking customer response to energy prices. A typical UK distribution network is utilised to illustrate the new approach and results show that derived economic signals can effectively benefit end customers for reducing system congestion costs and deferring required network investment.</p

    Robust Optimization-Based Energy Storage Operation for System Congestion Management

    Get PDF
    Power system operation faces an increasing level of uncertainties from renewable generation and demand, which may cause large-scale congestion under an ineffective operation. This article applies energy storage (ES) to reduce system peak and the congestion by the robust optimization, considering the uncertainties from the ES state-of-charge (SoC), flexible load, and renewable energy. First, a deterministic operation model for the ES, as a benchmark, is designed to reduce the variance of the branch power flow based on the least-squares concept. Then, a robust model is built to optimize the ES operation with the uncertainties in the severest case from the load, renewable energy, and ES SoC that are converted into branch flow budgeted uncertainty sets by the cumulant and Gram–Charlier expansion methods. The ES SoC uncertainty is modeled as an interval uncertainty set in the robust model, solved by the duality theory. These models are demonstrated on a grid supply point to illustrate the effectiveness of a congestion management technique. Results illustrate that the proposed ES operation significantly improves system performance in reducing the system congestion. This robust optimization-based ES operation can further increase system flexibility to facilitate more renewable energy and flexible demand without triggering the large-scale network investment

    LMP-based Pricing for Energy Storage in Local Market to Facilitate PV Penetration

    Get PDF
    • …
    corecore