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Abstract—Existing capacity-based network pricing uses 

discounted cash flows to calculate network costs, unable to reflect 

the uncertainties and flexibilities of the network users. Such 

shortcoming could distort the cost-reflectivity of pricing signals, 

particularly those for renewables and flexible technologies, 

causing more constraints and curtailment issues in networks. 

Corresponding to these issues, this paper designs a new pricing 

method, Incremental Cost Network Pricing based on Real Options 

(ICOC), which can reflect network user uncertainties on network 

investment by using real options theory. Under this concept, 

network operators can delay investment for a certain period by 

paying waiting cost based on options’ value until more information 

is available, thus avoiding non-reversible investment due to 

uncertainties. The options’ cost will be levied on network users as 

i) rewards if they provide flexibilities to the system, or ii) waiting 

costs if they present uncertainties to the system. The reward or cost 

to the network users is determined by a binomial tree pricing 

under a risk-neutral condition, which is added onto asset present 

value as the total cost to be recovered. Such cost is allocated to 

network users based on their nodal incremental costs. The 

proposed method is demonstrated on a practical network with 

different users, i) uncertain, ii) flexible; iii) certain and nonflexible. 

The new ICOC pricing scheme can capture the impact of network 

user uncertainty on network investment and thus set cost-

reflective price signals to influence their behaviours.  

Index Terms—Network investment, Network Charges, 

Uncertainty, Real Options, Long-run Incremental Cost 

I. INTRODUCTION  

O reduce CO2 emission,  renewables, electric vehicles (EVs)  

and energy storage are increasing [1]. Energy storage can 

change their energy utilisation behaviour by shifting load and 

thus provide flexibility [2] to the power system. For example, 

controllable storage can discharge during system peak and 

provide alternative ways to meet network capacity requirements, 

deferring network reinforcement. By contrast, in some cases, 

these technologies can introduce severe uncertainties, reducing 

the available capacity of the system and bringing close 

investment. For example, uncontrollable energy storage and 

EVs might charge at the peak power flow period, bringing along 

uncertainties to systems [3] and thus, the system unused 

capacity is reduced during peak time. 

These new grid-connected technologies pose severe 
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challenges on current network pricing schemes, which requests 

a new pricing scheme to recover investment costs and guide 

network users to use existing networks efficiently. The current 

network pricing schemes have two key steps: 1) evaluating 

asset costs and 2) allocating asset costs to network users. Since 

uncertainty or flexibility will directly increase or reduce system 

peak, they will add or reduce costs in evaluating network 

investment. Currently, long-run incremental cost (LRIC) 

pricing [4] and Forward Cost Pricing (FCP) [5]are investment-

oriented and they are widely used in UK distribution networks. 

LRIC is designed based on unused capacity and FCP evaluates 

asset investment cost on a 10-year horizon. Although LRIC is 

more efficient than FCP to reflect the locational information of 

network users [4], they both are not fit for the new environment. 

Current schemes assume that the network must be invested 

after a certain year, normally determined by the Net Present 

Value (NPV) approach [6]. The NPV approach, based on the 

discount cash flow method has the following defects. It does not 

consider uncertainty or flexibility in timing an investment. On 

the contrary, the reinforcement horizon should become 

dynamic. The impact of flexibilities and uncertainties should be 

considered and evaluated. Uncertainty suggests that there is a 

potential cost of forwarding investment. By contrast, flexibility 

provides potential benefits by deferring system investment. It is 

longer if load growth is small due to those flexibilities can 

reduce peak demand, vice versa. Thus, the future investment of 

networks should ‘wait and see’ to acquire more information 

before making investment decisions [7]. In addition, the current 

network pricing schemes cannot reflect the ability of future 

demand management of network users. Thus, the traditional 

pricing scheme overestimates the use-of-system charge of 

flexible loads and underestimates that for uncertain loads. The 

network users should get incentives by providing flexibility and 

be penalised by posing uncertainties.  

One key challenge in incorporating uncertainties into 

network pricing is to model them while evaluating investment 

costs. Generally, there are two methods, the weighted average 

cost of capital (WACC) [8] and real options [9]. WACC 

calculates the cost of capital, where each category of capital is 

proportionately weighted. It assumes that the risk is constant 

and new projects will not impact the risk level, which is 
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unrealistic in network pricing [10]. The real options method 

uses values associated with net present value and augments this 

with the cost of uncertainty [11, 12]. It addresses decision-

making issues in sunk investments, based on giving up waiting 

cost resulting from future uncertainties. By paying the waiting 

cost, network operators could wait, i.e. defer investment, to 

receive more information and thus could reduce the impact of 

uncertainties on investment. Thus, it is normally used as a 

decision-making tool for future investment [13-15]. The real 

option pricing method can be divided into three main classes: 1) 

binomial tree model [16, 17]; 2) Monte Carlo simulation 

method [18-20] and 3) Black-Scholes model [14, 15]. All these 

approaches have some flaws when applied to real options 

valuation. Although the binomial tree model is less accurate 

than the Monte Carlo simulation method and the Black-Scholes 

model, it is a straightforward model and provides an analytical 

technique to calculate options costs in network investment. It 

offers more flexibility by altering the inputs in each step to 

include the differences in the ability to exercise an option. The 

optimal risk-averse investment policies also can be analysed via 

the real options method [16]. It provides an opportunity to 

access more information regarding users’ behaviours in the 

future to reduce the impact of uncertainties. Paper [17] uses the 

real options method to convert the impact of uncertainties on 

future network investment into the waiting costs to reduce the 

risk of investment decision making under uncertainty, which 

avoids non-reversible investment. Although some studies [21] 

evaluate the uncertainty of load by setting a high load growth 

rate, it is not accurate to capture the behaviour of network users 

on investment.  

The cost allocation method can be classified into two main 

groups, which are 1) levied averagely over the network users 

(such as postage stamp [22], DRM [23]and FCP [5]) and 2) 

levied based on the cost causation principle [24] (such as LRIC 

and LMP [25]). LRIC and LMP allocate the cost based on the 

incremental or marginal effect of load change considering the 

location differences, which have significant advantages to give 

cost-reflective incentives to the load and generations. 

This paper proposes a novel Incremental Cost Network 

Pricing based on the Real Options (ICOC) approach, which can 

reflect the uncertainties of the network users. Firstly, the 

original reinforcement horizon of networks is calculated based 

on the present value and peak flows of branches. Then, the 

waiting cost or rewards of network assets/branches to be 

invested is quantified to reflect uncertainties based on the risk-

neutral theory. The uncertainty level is classified into different 

scenarios to show their contributions to peak branch flows. 

Thus, the investment cost is determined by asset present value 

and augmented with waiting cost or rewards. After evaluating 

the cost to be levied from uncertain and flexible loads, it is 

allocated to network users based on their contribution to peak 

power flows along branches. Network users providing 

flexibility can receive negative waiting cost, i.e. rewards, 

resulting from investment deferral. The waiting cost or reward 

is allocated to the network users according to the impact of 

uncertainty on peak branch flow the binomial option pricing 

model. The proposed method is compared with the LRIC 

pricing method by demonstrating on a UK GSP network.  

This paper has the following key contributions.  

▪ It designs a new network pricing method with a dynamic 

network investment horizon, which can capture the impact 

of customer uncertainties on network investment, thus 

making investment more flexible and efficient; 

▪ It defines the costs of uncertainty and rewards for 

flexibilities via real options method based on customer's 

impact on future network investment, in which way the 

price signals are more cost-reflective to influence customer 

behaviours;  

▪ enhances the fairness of the pricing scheme. It means 

flexible users receive more incentives and uncertain users 

pay higher charges.  

The rest of the paper is organised as follows: Section II 

designs the ICOC pricing method based on real options for 

different types of users under uncertainty or flexibility. Section 

III gives an outline of the whole process. Sections IV 

demonstrate the model in a practical distribution network. 

Section V draws the conclusion.   

II. NETWORK PRICING METHOD BASED ON REAL OPTIONS 

Network pricing scheme design contains two key steps, 1) 

investment cost evaluation and 2) cost allocation. The impact 

of uncertainty on network investment decision making is 

evaluated as waiting cost based on the real options method in 

previous work [17]. This work focuses on cost allocation based 

on the uncertain and flexible features of different users. It shows 

that the waiting cost can be captured by the real options method, 

which could evaluate the additional cost resulting from network 

investment deferral. Paying the waiting cost provides an 

alternative way for network owners under uncertainties, 

reducing risks and costs simultaneously. [17] provides a 

theoretic method for this work to evaluate network costs under 

uncertainty and flexibility. In traditional LRIC, the allocated 

cost is asset cost over its whole life span with a certain 

reinforcement horizon. The ICOC is designed to reflect the 

impact of uncertainty on network prices by combining the LRIC 

and the real options method.  

A. Cost in Traditional Network Pricing 

Traditional network pricing scheme uses discount cash flow.  

The present value of assets is determined in (1). The time to 

reinforcement horizon is calculated in (2) to show the time 

horizon when the power flow reaches branch capacity [4]. 

𝑃𝑉0 =
𝐴𝑠𝑠𝑒𝑡𝑙

(1+𝑑𝑟)𝑛𝑙
                                  (1) 

𝑛𝑙 =
log 𝐶𝑙−𝑙𝑜𝑔 𝑃𝑙

𝑙𝑜𝑔⁡(1+𝑟𝑙)
                                 (2) 

where power flow 𝑃𝑙  can grow to capacity 𝐶𝑙 after year 𝑛𝑙 with 

the load growth rate 𝑟𝑙, 𝑑𝑟 is the discount rate, and 𝐴𝑠𝑠𝑒𝑡𝑙  is the 

asset cost of this branch. 

Normally, the mean value of predicted peak demand is used 

in the calculation, which means the actual demand peak may be 

higher than the predicted value under the worst-case. Thus, with 
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the same predicted mean value, uncertain load contributes more 

to the system peak, reducing network unused capacity. For 

example, uncontrolled electric vehicle charging might increase 

system peak. Flexible load has the capability to reduce peak 

load and increase spare capacity for the system by offering 

flexibility. For example, energy storage can discharge during 

the system peak period when the energy price is high, providing 

flexibility to the system. The flexibility level is evaluated in 

terms of peak reduction.  

B. Options Pricing Method for Uncertainty 
The real options method provides an opportunity for network 

owners to defer system investment by paying the waiting cost 

based on the real options method. This allows network investors 

waiting for more information about systems in the future to 

make investment decisions, which reduces the impact of 

uncertainties on system planning. To reflect the impact 

resulting from uncertainties, asset cost evaluation should be 

reformed by adding waiting cost with asset present value. 

To evaluate the options cost resulted from uncertainty, the 

binomial options pricing method [9] is applied, which is a 

numerical method. The binomial pricing model uses binomial 

lattice (tree) to determine the present value in a number of time 

steps from now to the end. Each node in the tree represents a 

possible present value of the asset in a particular time step, 

called the term and it is assumed to be one year in this paper. 

The binomial options method performs recursively, starting 

from each final node (the step at right side treetop) and then 

calculating backwards through the tree towards the first node 

(the left side root of the tree), as shown in Fig.1. There are three 

key steps in determining the option's value: 1) creating a 

binomial tree; 2) calculating the waiting cost at the final node; 

3) calculating the waiting cost back to the start node.  
 

   
Fig.1. The tree method for one term.  

 

Under an uncertain environment, by assuming the time step 

to be one year, the asset present value is 𝑃𝑉0 in the current year. 

The asset present value is shown in (3). With a probability of 𝑝, 

the asset present value will grow 𝑢 times to 𝑃𝑉1𝑢. By contrast, 

with a probability of 1 − 𝑝, it will decrease 𝑑 times to 𝑃𝑉1𝑑 one 

year later. 

𝑃𝑉1 = 𝑃𝑉1𝑢 × 𝑝 + 𝑃𝑉1𝑑 × (1 − 𝑝)                  (3) 

𝑢 =
𝑃𝑉1𝑢

𝑃𝑉0
                                       (4) 

𝑑 =
𝑃𝑉1𝑑

𝑃𝑉0
                                       (5) 

𝑂𝑃1𝑢 and 𝑂𝑃1𝑑 are the waiting cost for asset present value 

change resulting from the possibility of present value increase 

or decrease one year later, shown in (6-7).  

𝑂𝑃1𝑢 = 𝑚𝑎𝑥(0, 𝑃𝑉1𝑢 − 𝑃𝑉1)                     (6) 

𝑂𝑃1𝑑 = 𝑚𝑎𝑥(0, 𝑃𝑉1𝑑 − 𝑃𝑉1)                    (7) 

Based on the risk-neutral method, the difference between the 

probability present value and the options’ value equals the risk-

free portfolio (the present value one year later 𝑃𝑉1) in (8). 

   𝑃𝑉1𝑢 − 𝑂𝑃1𝑢 = 𝑃𝑉1𝑑 − 𝑂𝑃1𝑑=𝑃𝑉1              (8) 

Based on the discount cash flow model, the present value of 

the investment one year later is determined by riskless interest 

rate 𝑟𝑟  in (9). Thus, in the current year, the waiting cost (𝑂𝑃0) 

can be evaluated in (10)  based on the [9]. Combining (8) with 

(9), the present value change probability over time is derived in 

(11). 

𝑃𝑉0 = 𝑒−𝑟𝑟𝑡 × (𝑃𝑉1𝑢 − 𝑂𝑃1𝑢)                (9) 

𝑂𝑃0 = 𝑒−𝑟𝑟𝑡 × [𝑂𝑃1𝑢 × 𝑝 + 𝑂𝑃1𝑑 × (1 − 𝑝)]

⁡⁡⁡⁡⁡⁡⁡⁡⁡= 𝑒−𝑟𝑟𝑡 × [
𝑒𝑟𝑟𝑡−𝑑

𝑢−𝑑
× 𝑂𝑃1𝑢 +

𝑢−𝑒𝑟𝑟𝑡

𝑢0−𝑑
× 𝑂𝑃1𝑑]

      (10) 

𝑝 =
𝑒𝑟𝑟𝑡−𝑑

𝑢−𝑑
                                       (11)  

where, specific factors 𝑢  and 𝑑  describe the present value 

change from the current year to the next year, and 𝑡 is the length 

of the period.  

C. Multi-Terms Binomial Options Pricing Model 

If an investment horizon is 𝑛𝑙  years, the binomial pricing 

method should be extrapolated to 𝑛𝑙  years, which is the 

concatenation of the single term trees introduced in (3-11).  
 

 
Fig.2. Multi-Terms of the option. 

 

Thus, the waiting cost calculates the value from the final 

node in the year 𝑛𝑙 to the current year. Based on the binomial 

tree method, the waiting cost in year 𝑛𝑙 − 1 can be calculated 

based on the waiting cost in the year 𝑛𝑙. Therefore, the waiting 

cost for users with uncertainties can be iterated to the current 

year with 𝑛𝑙 times recursivation, shown in (12). This procedure 

is shown in Fig.2. 

𝑂𝑃0 = 𝑒−𝑟𝑟𝑡 × [∑
𝑛𝑙!

𝑖!×(𝑛𝑙−𝑖)!
× 𝑝𝑖 × (1 − 𝑝)𝑛𝑙−𝑖𝑛

𝑖=0 × ∆𝑃𝑉] (12) 

∆𝑃𝑉 = max⁡(0, 𝑢𝑖 × 𝑑𝑛𝑙−𝑖 × 𝑃𝑉0 − 𝑃𝑉𝑛)              (13) 

where ∆𝑃𝑉 is the present value difference between the starting 

node and the final node, 𝑖 is the index of the year (𝑖 ≤ 𝑛𝑙). 
D. Incremental Cost Allocation 

The current pricing schemes assume that networks should be 

invested after a certain year when the capacity is fully loaded 
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and asset cost is allocated to network users based on their 

contribution to system peak power change.   

The peak power flow change due to nodal power changes is 

determined by the linearised DistFlow model [26, 27]. An index 

matrix, inspired by the power transfer distribution factor, is 

built by the sensitivity of the injected nodal power on branch 

power flow changes in (14). The power flow change on branch 

𝑙 is ∆𝑃𝑙 due to the additional power change (∆𝑃𝑁) on node N. 

Index 𝑀𝑛,𝑙  is used to measure the impact of load or generation 

located at node 𝑁 on branch 𝑙’s flow.  

𝑀𝑛,𝑙 =
∆𝑃𝑙

∆𝑃𝑁
                                     (14) 

The reinforcement horizon will change to 𝑛𝑙_𝑛𝑒𝑤  with the 

nodal injection or withdrawal, expressed as [4]:  

𝑛𝑙_𝑛𝑒𝑤 =
log𝐶𝑙−𝑙𝑜𝑔(𝑃𝑙+∆𝑃𝑙)

𝑙𝑜𝑔⁡(1+𝑟𝑙)
                          (15) 

In the incremental cost pricing, the change of the present 

value and the waiting cost resulting from the nodal energy 

change are calculated respectively in (17-18) [4] : 

𝑃𝑉𝑙_𝑛𝑒𝑤 =
𝐴𝑠𝑠𝑒𝑡𝑙

(1+𝑑𝑟)
𝑛𝑙_𝑛𝑒𝑤

                            (16) 

𝑂𝑃0_𝑛𝑒𝑤 = 𝑒−𝑟𝑟𝑡 × [∑
𝑛𝑙_𝑛𝑒𝑤!

𝑖!×(𝑛𝑙_𝑛𝑒𝑤−𝑖)!
× 𝑝𝑖 × (1 − 𝑝)𝑛𝑙_𝑛𝑒𝑤−𝑖𝑛

𝑖=0 × ∆𝑃𝑉𝑛𝑒𝑤] (17) 

∆𝑃𝑉𝑛𝑒𝑤 = max⁡(0, 𝑢𝑖 × 𝑑𝑛𝑙_𝑛𝑒𝑤−𝑖 × 𝑃𝑉0_𝑛𝑒𝑤 − 𝑃𝑉𝑛𝑒𝑤) (18) 

Since the waiting cost allows network investors to obtain 

more information before making an investment decision, it is 

reasonable to add the waiting cost in evaluating the cost to be 

recovered under uncertainties. Therefore, the waiting cost is 

added to the present value⁡(𝑃𝑉 + 𝑂𝑃), forming the recovery 

cost ( 𝑅𝑐𝑡 ). The incremental cost for network users with 

uncertainties is: 

𝐼𝐶𝑂𝐶𝑁 =
∆(𝑅𝑐𝑡)

∆𝑃𝑁
=

∑ [(𝑃𝑉𝑙𝑛𝑒𝑤+𝑂𝑃0𝑛𝑒𝑤)−(𝑃𝑉𝑙+𝑂𝑃0)𝑙 ]

∆𝑃𝑁
× 𝑎𝑓   (19) 

where, the annuity incremental cost of the branch is calculated 

based on the difference between the sum of asset present value 

in terms of ∆𝑃𝑁. 𝑎𝑓 is the annuity factor. The incremental cost 

to support node N is the summation of the incremental cost 

overall branches it uses.   

E. Reward Method for Flexibility 
Since uncertainties reduce the available capacity of the 

system, the load with flexibility addresses this challenge by 

moving away the demand from peak time. Because peak power 

flow can be reduced due to flexibility, the present value at the 

final node is smaller than that at the start node. Thus, the waiting 

cost for customers, setting as a reward i.e. negative cost, can be 

calculated based on the risk-neutral theory for customers 

providing flexibility. At the final point, the incentives of the 

probability value for the users providing flexibility, 𝑂𝑃𝑓1𝑢 and 

𝑂𝑃𝑓1𝑑, are derived in (20-21) from (6-7). The reward for users 

providing flexibility at the current point is in (22). 

𝑂𝑃𝑓1𝑢 = 𝑚𝑎𝑥(0, 𝑃𝑉1 − 𝑃𝑉1u)                   (20) 

𝑂𝑃𝑓1𝑑 = 𝑚𝑎𝑥(0, 𝑃𝑉1 − 𝑃𝑉1d)                   (21) 

𝑅𝑑 = −𝑂𝑃1 = −𝑒−𝑟𝑟𝑡 × [
𝑒𝑟𝑟𝑡−𝑑

𝑢−𝑑
× 𝑂𝑃𝑓1𝑢 +

𝑢−𝑒𝑟𝑟𝑡

𝑢−𝑑
× 𝑂𝑃𝑓1𝑑](22) 

The reward is added to the present value (𝑃𝑉 + 𝑅𝑑) as the 

cost recovery (𝑅𝑐𝑡). Therefore, if uncertainty load evolves into 

flexible load, they can get incentives instead of the punishment 

by reducing system peak and consequently total investment.  

III. IMPLEMENTATION PROCESS  

There are two main stages in setting pricing signals to 

network users, which are cost evaluation and cost allocation. 

These two steps are depicted in Fig.3 to show the whole 

implementation procedure.  

     
Fig. 3. Flowchart of the whole implementation process 

A. Stage 1: Recovered Cost Evaluation 

Two parts of the cost, asset present value and addition cost 

(waiting cost or reward), should be recovered from network 

users. The cost to be recovered is recalculated by considering 

the uncertainty of network users through the real options 

method. In this stage, the reinforcement horizon of network 

assets and the recovered cost are determined. Firstly, with 

system data, system peak power flow can be determined and 

accordingly the reinforcement horizon for each branch can be 

calculated. Because the present value converts the asset cost 

from the future year back to the current year, the final node of 

the waiting cost or reward should be calculated at the year when 

investment occurs. The number of terms of the binomial tree in 

options calculation equals the reinforcement horizon. The 

waiting cost or reward is directly determined by network users’ 

uncertainty or flexibility level. With reinforcement horizon (𝑛𝑙) 
and waiting cost or reward at the final node in the year 𝑛𝑙, it is 
easy to calculate waiting cost or reward in the current year 

backwards from 𝑛𝑙.  

B. Stage 2: Cost Allocation 

To allocate the cost to be recovered to network users, the 

incremental cost pricing method is implemented. The 
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incremental cost is derived by a nodal power injection at each 

node. Then, the difference of the recovery cost as a result of the 

nodal injection can be calculated for each branch. For network 

users at node N, the recovery cost difference due to the nodal 

injection is summarised from all the branches that support them. 

The steps will terminate to calculate ICOC for different network 

users.  

IV. PRACTICAL NETWORK DEMONSTRATION 

A practical UK Grid Supply Point area distribution network 

is selected to demonstrate the proposed models in Fig.4 [28]. 

The slack bus is modelled as a generation (G1008). To simplify 

the demonstration, the peak demand, normally evaluated via 

worst case, is assumed as 3-sigma higher than the predicted 

mean value. It assumes that the peak power flow occurs at the 

peak load period assessed by the coincidence factor.  

 
Fig.4. A Grid Supply Point area test system.  

 

There are three scenarios are set to analyse the performance 

of the proposed pricing scheme: 1) The load at bus 1003 has 

EVs. On the one hand, it may contribute 5MW more than the 

predicted mean value to the peak demand due to its uncertain 

charging. On the other hand, it may offer 5MW flexibility if it 

is well regulated. 2) The network users at bus 1006 with 

controllable energy storage can provide 3MW flexibility to the 

system. 3) An auxiliary generation (G1) is located at bus 1005 

with a peak predicted output of 5MW (mean value), which may 

generate less 1MW and contribute to peak power flow due to 

the uncertainty. Assuming the branches asset lifespan is 40 

years with an annuity factor 0.0831 [4]. Typical load growth is 

2% and the discount rate is 5.6% and network losses are 

neglected in this work. 

The capacity of branches No.2 and No.3 is 24MW. The 

interconnector (branch No.23) between two voltage levels has 

a capacity 6.5MW. The highest asset cost is £1.85 billion from 

branch No.2, which has a significant impact on network charges 

for load and generation. Although the transformers have 

different capacities, the asset costs are assumed as £0.44 million. 

A. Pricing Signal for Non-regulated EVs  

The non-regulated EVs, as uncertain load, at busbar 1003 

reduces the unused capacity of the system due to its uncertainty 

and the waiting cost and network charges from the branches that 

support this load are analysed. 

Since the uncertainty of network users increases the peak 

demand, the branches that support this node will have positive 

waiting costs with their power flow increases. The predicted 

mean value of the demand peak for the users at busbar 1003 is 

28.4MW, which may increase to 33.4MW due to its uncertain 

charging. As shown in Table I, the waiting cost for branch No.2 

is £122.8k and the waiting cost for branch No.15 is only £21.8k. 

This is because of the asset cost difference and the contribution 

difference of the load at busbar 1003 to these branches. 
 

TABLE I 

The waiting cost of each branch (MW) 

Branch No.2 No.3 No.14 No.15 No.16 No.17 No.23 

Cost(£k) 122.8 114.5 22.6 21.8 53.3 42.5 33.4 

 

With the determined waiting cost of each branch, the network 

cost can be calculated and compared with the existing LRIC 

pricing method, which is shown in Fig.5. The blue bars 

represent the branch charges from the LRIC pricing method and 

the red bars are determined from the ICOC pricing method. The 

network charge from branch No.2 increases £442.8/MW from 

£7555.9/MW to £7998.7/MW due to the reduced unused 

capacity from the uncertainty. It increases £165/MW from 

branches No.14&15. However, this uncertainty also makes the 

branches network charges decrease from -£71.8/MW to -

£96.4/MW from No.4 and decrease from -£319.8/MW to -

£329.6MW from branch No.23.  

In total, the network charge for the non-regulated EVs at bus 

1003 is £20876.1/MW, considering the waiting cost of 

uncertainty. Although the demand peak only increases 5MW 

resulting from uncertainty, the use of system charge is 

£1106.3/MW higher than that calculated from LRIC, which is 

£19769.8/MW.  
 

  
Fig.5. The network charges for non-regulated EVs from different branches. 

B. Pricing Signal for Energy Storage Offering Flexibility 

The pricing for energy storage, as flexible load, at bus 1006 

offering system flexibility is demonstrated. It can offer 3MW 

branch flow decreases at the peak power flow time, which can 

reduce its demand peak from 20.2MW to 17.2MW.  

Based on the risk-neutral theory, the reward of different 

branches, listed as negative cost, are shown in Table II. The 

branches that support this node will have a reward if their 

branch flows are decreased. Branches No.2 & No.3 have the 

lowest reward, £118.1k & £110.2k, due to the high asset cost 

and the flexibility contribution from the network user at bus 

1006. The flexibility offered by the customers significantly 

defers future investment, giving more incentives to promote 

flexibility. 
TABLE II 

The reward of each branch (MW) 

Branch No.2 No.3 No.14 No.15 No.16 No.17 No.23 

Cost(£k) -118.1 -110.2 -22.4 -21.6 -52.9 -42.2 -32.3 
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Based on the reward for the flexibility from energy storage 

at bus 1006, the network charges are determined in Fig.6. The 

blue bars are network charges from LRIC and the red ones are 

from the proposed ICOC method. The flexibility of energy 

storage reduces network charges. The network charge at branch 

No.2 decreases by £354.1/MW from £6274.2/MW in LRIC to 

£5920.1/MW in ICOC. The charge at branch No.3 is 

£6187.0/MW from the LRIC pricing method, which drops to 

£5838.0/MW by the proposed ICOC. The network charges at 

branch No.23 increases from -£338.8/MW to £-319.6/MW, but 

this impact is very small compared to the reduction of the other 

two branches.   
 

 
Fig.6. Network charges for energy storage at bus 1006 from different branches. 
 

In summary, the network charge for the user with energy 

storage at busbar 1006 is the summation from the supported 

branches. The LRIC for this user is £12616.6/MW and it 

decreases by £735.6/MW in ICOC by £11881.0/MW when 

considering flexibility in the pricing method.  

C. Pricing Signal for Renewable Generation with Uncertainty  

For renewable generation at bus 1005, the uncertainty 

increases network charges from positive waiting cost, shown in 

Table III.  The waiting cost of branch No.2 is £11.7k and for 

branches No.16 & No.17, the waiting costs are £4.4k and £3.5k.  
 

TABLE III 

The waiting cost of each branch (MW) 

Branch No.2 No.3 No.14 No.15 No.16 No.17 No.23 

Cost(£k) 11.7 10.9 2.4 2.3 4.4 3.5 2.6 
 

Branch No.23 is taken as an example for analysis in Fig.7. 

This binominal tree shows the present value and options value 

change on branch No.23. In the current year, the peak power 

flow is 5.85MW and the present value is £60.6k with renewable 

generation at bus 1005 (peak predicted output of 5MW). With 

the load growth rate, the power flow peak will increase to 

5.97MW according to the Power Transmission Distribution 

Factor (PTDF) matrix based on the DC power flow, with 5MW 

renewable output at busbar 1005. However, because of the 

uncertainty from the renewable generation, its peak output is 

assumed to be 4MW, which will reduce less peak power flows 

on branch 23. The peak power flow on this branch will be 

6.06MW according to the PTDF matrix based on the DC power 

flow with a possibility of 97%. 

 
Fig.7 The binomial tree for branch No.23 under renewable uncertainty  

 

The network charges for the renewable generation are 

negative from both LRIC and ICOC pricing methods, which is 

because generation gains benefit from the network by reducing 

peak branch flows shown in Table IV. However, due to the 

uncertainty of renewables, this benefit reduces resulting from 

the positive waiting cost, shown in Table IV. The network 

charges increase from -£37.1k to -£35.1k for branch No.16 and 

from -£29.6k to -£28.0k for branch No.17. 

Therefore, the network charges for the generation at busbar 

1005 increase 22.5% from -£1307k/MW produced LRIC model 

to -£1067k/MW generated from the proposed ICOC model due 

to the uncertainty. 
TABLE IV 

The network charges for renewables at bus 1005 from different branches 

Branch No.16 No.17 No.23 

LRIC (£k) -37.1 -29.6 -23.1 

ICOC (£k) -35.1 -28.0 -21.9 
 

D. Pricing Signal Change for Regulated EVs 

The EVs can provide flexibility if they are well regulated by 

the network operators. This section compares the pricing signal 

difference for regulated and non-regulated EVs. Sensitivity 

analysis is conducted to show the waiting cost or reward and 

network charge change with different loading levels from 

10MW to 40MW. It assumes that the network users with EVs 

at busbar 1003 contribute 10% of the peak demand due to the 

uncertainty. However, if these EVs are properly controlled, the 

uncertainty can be transferred as the flexibility to the system, 

which is assumed to offer to 10% decrease of the peak demand. 

This case analyses the network charges change for EVs with 

uncertain and flexible features.  

 Fig.8 shows the waiting cost or reward change resulting 

from the EVs providing uncertainty with increasing the demand 

level. With behaviour change, the EVs are regulated and thus 

uncertainty changes to flexibility. The blue line represents the 

ICOC pricing signal change and the red one is the ICOC change 

with flexibility. When the loading level is low, the waiting cost 

or reward for different users is low. At loading level 10MW, the 

waiting cost is £2710 for the uncertain EVs operation and the 

reward is £4070 for the regulated EVs for their flexibility. The 

reward for flexibility increases more dramatically with 

increasing load level. This is because the slope of the present 

value is steeper at a higher loading level, which means the 

present value change for the flexibility is more significant, 

which is reflected directly in the waiting cost or reward 

calculation. At loading level 40MW, the waiting cost for the 

uncertainty resulting from EVs is £122.9k and the reward is 

£184.7k for EVs if it provides flexibility. This means the 

network users with EVs can obtain more benefits if they are 

well regulated and offer flexibility under less unused capacity. 
 

 
Fig.8. The waiting cost or reward change with demand increase 
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Fig.9 shows network charge differences for EVs providing 

uncertainty, flexibility, and without both uncertainty and 

flexibility resulting from the status of its operation. If EVs are 

without any uncertainty or flexibility, the network charges for 

them are the same as LRIC pricing, which is represented in the 

blue bars. At a low loading level of 10MW, these three types of 

network charges for EVs are similar, around £1200/MW. This 

is because the unused capacity of the branches is sufficient to 

accommodate the load uncertainty. For network charges with 

uncertainty, represented by the orange bars, it increases higher 

than LRIC, which means the uncertainty makes EVs pay more 

network charges. It is £13930/MW, which is 5% higher than 

that from the LRIC pricing signal (£13230/MW) at loading 

level 40MW. The charges for regulated EVs that can offer 

flexibility to the system are depicted in the yellow bar. It 

increases slower than those in LRIC and ICOC. This means 

EVs providing flexibility will obtain more savings at high 

loading levels. At 40MW, the ICOC for flexible EVs is 

£12180/MW, which is 8.6% less than the LRIC pricing signal 

and 14.3% less than ICOC for the EVs with uncertainty at the 

same loading level.  
 

 
Fig.9. Network charges comparison with load increase 
 

E. Sensitivity Analysis for the Uncertainty Level Change 

The sensitivity analysis is applied to the load on busbar 1001. 

The transmission capacity is 45 MW between busbar 1008 and 

1001, and the peak demand on bus 1001 is 30MW in the current 

year. The load with certainty will grow under load growth rate 

𝑟𝑙. Thus, the waiting cost or reward is zero and network charges 

for these customers are the same as the charges calculated by 

the original LRIC. 

 
Fig. 10. The present value change for different uncertainties 
 

Assuming that the load grows to 36.43MW under small 

uncertainty (10%) and grows to 39.74MW with big uncertainty 

(20%). In the current year, the power flow is 30MW with the 

present value of £1046.5k (𝑃𝑉0) for the branch.  The peak will 

grow to 33.12MW with no uncertainty (the present value 𝑃𝑉1 

of the branch is £1373.9k) after one term. Under small 

uncertainty, the present value of the branch will grow to 

£1785.6k (𝑃𝑉1𝑢⁡10%) and grow to £2268.4k (𝑃𝑉1𝑢 20%) under 

big uncertainty, which is given in Fig. 10. 

To determine the waiting cost of network users under small 

uncertainty (10%), the binomial tree is built in Fig.11. Based on 

(1-7), the possibility (𝑝) is determined to be 9.91% and the 

waiting cost at the current year is £38.1k. It also assumed that 

it has (1 − 𝑝) possibility to keep the same loading level, which 

with the waiting cost zero. Similarly, the waiting cost for the 

network users with big uncertainty is £50.1k. Thus, the cost to 

be recovered (𝑅𝑐𝑡) is £1084.6k and £1096.6k for the branch 

under small and big uncertainty respectively. 
 

 
Fig.11. The binomial tree under small uncertainty  
 

 
Fig.12 The convergence of the cost of the options 
 

If the term (yearly) can be divided into shorter iteration terms 

(in months), the waiting cost at the final node is more accurate. 

Fig.12 shows the convergence of the waiting cost for network 

users with small uncertainties. Dividing the original annual 

term into shorter terms, although the waiting cost of the first 

iteration term is £38.0k not equal to the convergence value, the 

difference is less than 0.3% and is neglectable.   

For the customers who can provide flexibility to the system, 

it is assumed that those with big flexibility can offer 20% 

branch peak reduction and 10% peak reduction with small 

flexibility. Based on the binomial pricing method, the reward is 

determined through the binomial tree. It assumes that the 

loading level will have a possibility of (1-p) to keep the same 

for network users with flexibility. The  𝑃𝑉1𝑢  will change to 

£783.1k and £566.3k for the users with small and big flexibility 

respectively. Therefore, for network users with small flexibility, 

the reward is £54.3k. It is £61.0k for network users with big 

flexibility. These are the investment savings due to the 

flexibility of the customers, which will give them lower use-of-

system charges. This special change is mainly because 1) the 

negative cost means that the cost to recover from network users 

is lower than that in the original asset present value in NPV or 

LRIC model due to the investment deferral; 2) the reward for 

users can offer large flexibility is smaller, but its absolute value 

is high, which means they can enjoy more reduced revenue 

recovery. Thus, it makes the new present values £992.2k and 

£985.5k for the branches under small and big flexibility. 
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Considering the uncertainty and flexibility of network users, 

the cost to be recovered is changed by adding the waiting cost 

or reward to the asset present value. The present value, waiting 

cost or reward and incremental pricing signal for users under 

different levels of uncertainty or flexibility are shown in Fig.13. 

The area in blue shadow represents the original present value 

(£1046.5k) in the current year without considering any 

uncertainty or flexibility of network users. The grey bar above 

the present value in the figure represents the waiting cost, which 

means the total cost to be recovered from customers (Rct in the 

red) becomes larger due to its uncertainty. The green bar is the 

reward, which means the total cost to be recovered from 

customers becomes lower due to the flexibility it provided. 

   
Fig.13. Pricing signal for users under different uncertainty or flexibility 

 

 The pricing signals can be calculated from the difference of 

asset value change based on the incremental cost with nodal 

injections. The original network price is £7999.3/MW in LRIC, 

which is the same for network users without uncertainty or 

flexibility. It increases to £8283.6/MW and £8374.0/MW for 

users with small and big uncertainty respectively based on 

ICOC. For network users that can provide small or big 

flexibility to the system, the network cost will reduce to 

£7585.4/MW and £7533.8/MW respectively. This implicates 

that network users with more flexibility will have lower 

network charges and network users with more uncertainty will 

have higher charges.  

V. CONCLUSIONS 

This paper designs a novel pricing scheme for network users 

to capture their uncertainty and flexibility, and consequently the 

impact on network investment. It can help network operators to 

reward or penalise network users according to their contribution 

to network investment deferral. Through extensive 

demonstration, the following key findings are obtained: 

▪ The flexibility or uncertainty of network users can be 

captured by the risk-neutral theory and reflected in the 

network cost evaluation. 

▪ The proposed ICOC pricing scheme efficiently incentivises 

flexible load and penalises uncertain load; 

▪ The load with high flexibility enjoys low network charges, 

which allows the existing network to accommodate more 

load and generations without reinforcing the branches.  

This work is beneficial to further the capability increase of 

distribution networks to accommodate increasing renewable 

penetration. In addition, it provides a powerful tool for network 

operators to evaluate users’ behaviour and it can affect the use 

of system behaviour of network users to increase the efficiency 

of network utilisation. Since the key innovation of this work is 

to design the new pricing scheme for uncertain and flexible load, 

the evaluation of uncertainty and flexibility levels are not 

considered but will be conducted in future work. 
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