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Abstract-- The future energy system embraces growing flexible 

demand and generation, which bring large-scale uncertainties 

and challenges to current deterministic network pricing methods.  

This paper proposes a novel reliability-based probabilistic 

network pricing method considering demand uncertainty. 

Network reliability performance, including probabilistic 

contingency power flow (PCPF) and tolerance loss of load 

(TLoL), are used to assess the impact of demand uncertainty on 

actual network investment cost, where PCPF is formulated by the 

combined cumulant and series expansion. The tail value at risk 

(TVaR) is used to generate analytical solutions to determine 

network reinforcement horizons. Then, final network charges are 

calculated based on the core of the Long-run incremental cost 

(LRIC) algorithm. A 15-bus system is employed to demonstrate 

the proposed method. Results indicate that the pricing signal is 

sensitive to both demand uncertainty and network reliability, 

incentivising demand to reduce uncertainties. This is the first-

ever network pricing method that determines network 

investment costs considering both supply reliability and demand 

uncertainties. It can guide better sitting and sizing of future 

flexible demand in distribution systems to minimise investment 

costs and reduce network charges, thus enabling a more efficient 

system planning and cheaper integration.   

 
Index Terms-- Network pricing, uncertainty, probabilistic, 

reliability, long-run incremental cost pricing.    1 

I.  INTRODUCTION 

HE future energy system with increasing distributed 

energy resources (DERs) bring significant challenges to 

planning and pricing schemes of distribution networks. In the 

UK, over 800,000 homes have installed PV panels, and 

137,000 light-duty plug-in electric vehicles have been 

registered. The intermittent generation and flexible demand 

can cause unexpected peaks or valleys on networks and affect 

supply reliability. Meanwhile, the combination of variable 

DERs also results in uncertain network utilization.  

The use-of-system charge is designed to recover network 

investment cost from network users and financially incentive 

economic sitting and sizing of potential demand and 

generation [1]-[2]. In the UK practice, the use-of-system 

charge needs to comply with principles of transparency, 
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fairness and predictability set by the regulator. Current use-of-

system charges for Extra High Voltage (EHV 132kV-22kV) 

and High Voltage (HV 22kV-1kV) distribution systems are 

derived by using deterministic power flows at system peak, 

where network utilization is traceable and predictable [3]. 

However, in the future scenario, due to the DER integration, 

the uncertainties will distort the effectiveness of traditional 

pricing methods, so that produce inaccurate cost-reflective 

signals and mislead demand and generation planning. This 

either leads to deficits of recovered cost for distribution 

network operators or leads to the end-users overpayments. 

Therefore it is urgent to develop new network pricing methods 

considering uncertainties of end customers, particularly those 

incurred by DERs.    

Forward-looking charging methods are applied by UK 

DNOs on EHV and HV distribution systems. Long-run-

incremental cost pricing (LRIC) and forward cost pricing 

(FCP) are the two commonly used deterministic-based 

network pricing schemes. LRIC pricing method is calculated 

by determining the present value change due to the 

incremental nodal demand injection or generation and 

discounts the future reinforcement cost into annual nodal 

network charge [4]. FCP divides the distribution network 

service area into isolated groups. FCP demand pricing is 

determined by calculating network reinforcement costs to 

accommodate a maximum 15% demand increment for each 

network group over next ten years and averaged at each 

voltage level within the network group [5]. Both methods 

consider load demand as deterministic, which are inefficient to 

evaluate network asset cost and allocate the cost fairly 

between users considering increasing uncertainties. 

Limited literature has studied network pricing under 

uncertainties. Paper [6] considers long-term load growth to be 

uncertain and adopts the fuzzy set theory to generate 

deterministic network charges, using vertex expansion and the 

centre of gravity defuzzification. A reliability-based network 

pricing method is proposed in [7]. It calculates the charges 

based on network reliability performance under N-1 

contingency, which requires the incurred contingency must 

align with the security requirements [8]. A sensitivity analysis 

is conducted to evaluate price signals under uncertain network 

reliability levels. However, those pricing methods for 

distribution networks still target at traditional load and 

generation. The latest improvement of pricing scheme for 

DERs simply applies F-factors to intermittent distributed 

generations (DGs) when calculating charge credits [9]. F 

factor is the proportion of the declared net capacity of a 
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generator that can be used to contribute to network security. It 

is only for DGs but cannot reflect demand uncertainties.  

In terms of network utilization, power flows can be 

regarded as the most explicit performance index. Stochastic 

and probabilistic methods are two major classifications of 

power flow modelling under uncertainties. Traditionally, 

because of the implementation simplicity, stochastic methods 

including Monte-Carlo (MC) simulation [10] [11] [12], 

interval [13] and affine arithmetic (AA) [14] are typical 

methods to model uncertain power flows of a network with 

intermittent generation and load. Besides, probability theory is 

widely used to model uncertainties for generating analytical 

solutions for probabilistic power flows (PPFs). Papers [15] 

[16] apply the convolution technique with a Fast-Fourier 

transform method to formulate PPF but require a significant 

computational burden. Papers [17]-[19] propose cumulant and 

moment-based methods to construct PPF by combining 

various expansion approximations, which significantly 

improve the computation efficiency. The approximate method 

is another uncertain power flow modelling technique, 

providing statistical properties of uncertain objectives.  Papers 

[20] [21] study the point estimate method to solve PPF and 

quantify the transfer capability of transmission networks. 

Although these methods well capture the uncertain features of 

power flows, they have not well studied how to incorporate 

them into design network pricing. 

This paper proposes a novel reliability-based probabilistic 

Long-run incremental cost pricing method (PR-LRIC) for the 

distribution network, considering demand uncertainties. By 

assuming nodal peak demand to be a random variable 

following certain probability distribution, network power 

flows are directly obtained from nodal demand by using the 

combined Gram-Chalier and cumulant method. Network 

contingency is then analysed to 1) determine allowed 

overloading for network components to reflect the network 

reliability level, based on nodal tolerable loss of load (TLoL) 

curtailment under contingency events; 2) formulate the 

probability density functions (PDF) of contingency power 

flows (CPF) due to uncertain peak demand. Thereafter, the tail 

value at risk (TVaR) method is utilized to assess the 

probability and expected overloadings under probabilistic 

contingency power flows (PCPF). The calculated allowed 

overloading is applied as the trigger to reinforce the network. 

Combined it with PCPF in the risk model, network 

reinforcement horizons and asset costs can be determined. 

Finally, the core of the LRIC pricing is used as the basis to 

calculate the final nodal network charges. The proposed 

method is demonstrated in a practical UK 15-bus distribution 

system. The sensitivity of demand uncertainty and network 

reliability on pricing signals is also studied. It proves that 

according to network reliability levels, the proposed method 

captures demand uncertainty by producing diversified nodal 

network charges against varying uncertainty levels.  

The main contributions of this paper are: 

• Formulating network PCPF for charge calculation 

directly from uncertain demand peak and network reliability. 

     • Using risk to determine network reinforcement horizons 

and investment costs due to demand uncertainty.   

• Designing a new network pricing method that 

distinguishes price signals based on network reliability and 

demand uncertainty levels, incentivising demand uncertainty 

reduction and connection to more robust networks.   

The rest of the paper is organized as followed: Section II 

introduces the traditional deterministic LRIC and reliability-

based LRIC network pricing methods. Section III presents the 

probabilistic power flow formulation. Section IV reports the 

main framework of the reliability-based probabilistic pricing 

model. Section V applies the proposed method to the test 

system for demonstration. Section VI makes further 

discussions. Section VII concludes this paper.  

II.  TRADITIONAL DETERMINISTIC METHODS IN COMPUTING 

NETWORK REINFORCEMENT HORIZON 

This section introduces network reinforcement horizon 

determination under traditional LRIC pricing method and 

reliability-based LRIC network pricing (R-LRIC) method. 

Basically, LRIC network pricing is based on users’ 

contributions on peak demand. It determines the present value 

whereof future network investment and calculates the network 

cost by taking the change of present value due to nodal 

injection or withdrawal. Therefore, the time horizon to 

reinforce the network is the key factor in the present value 

calculation. 

A.  Reinforcement Horizon in Traditional LRIC Pricing 

In traditional LRIC network pricing, the time horizon 𝑛𝑗 to 

reinforce the network component j is determined from the 

annual peak level of power flow (𝑝𝑓𝑗) and the rated capacity 

( 𝐶𝑗 ) of network component j, where the annual peak is 

assumed to be a deterministic value:   

 
𝑛𝑗 =

𝑙𝑜𝑔𝐶𝑗 − 𝑙𝑜𝑔𝑝𝑓𝑗

𝑙𝑜𝑔(1 + 𝑟)
 (1) 

where 𝑟 is the load growth rate. 

Resulting from the incremental power withdraw or 

injection (∆𝑃𝑁) at node N, the new reinforcement horizon of 

the component j is： 

 
𝑛𝑗𝑛𝑒𝑤 =

𝑙𝑜𝑔𝐶𝑗 − 𝑙𝑜𝑔(𝑝𝑓𝑗 + ∆𝑝𝑓𝑗)

𝑙𝑜𝑔(1 + 𝑟)
 (2) 

where ∆𝑝𝑓𝑗 is the power flow change along with component j 

resulting from nodal demand change (∆𝑃𝑁)   

B.  Reinforcement Horizon in Reliability-Based Pricing 

The reliability-based network pricing uses a different 

approach to determine network reinforcement horizon. The 

method firstly defines the tolerant loss of load (TLOL), which 

converts the expected energy not supply (EENS) and network 

reliability parameters into extra capacity component j. 

 
𝑇𝐿𝑂𝐿𝑗 =

∑𝐸𝐸𝑁𝑆

𝑀𝑇𝑇𝑅𝑖 ∙ 𝐹𝑅𝑖
 (3) 

where ∑𝐸𝐸𝑁𝑆  is the sum of EENS from demand nodes 

supported by component j; 𝑀𝑇𝑇𝑅𝑖  and 𝐹𝑅𝑖 are mean time to 

repair and failure rate of component i whose outage leads to 

the largest contingency power flow on network component j.  



 

 

The TLoL then is taken as the allowed overloading under 

the reliability supply standard. The reinforcement horizon of 

component j is:    

 
𝑛𝑗 =

𝑙𝑜𝑔(𝐶𝑗 + 𝑇𝐿𝑂𝐿𝑗) − 𝑙𝑜𝑔𝑝𝑓𝑗

𝑙𝑜𝑔(1 + 𝑟)
     (4) 

where 𝑝𝑓𝑗is the maximum contingency power flow of branch 

j.  

The reinforcement horizon of component j due to the 

incremental nodal power change (∆𝑃𝑁) is determined by: 

 
𝑛𝑗𝑛𝑒𝑤 =

log(𝐶𝑗 + 𝑇𝐿𝑂𝐿𝑗) − 𝑙𝑜𝑔(𝑝𝑓𝑗 + ∆𝑝𝑓𝑗)

𝑙𝑜𝑔(1 + 𝑟)
   (5) 

where ∆𝑝𝑓𝑗  is the change of contingency power flow at 

component j due to the incremental nodal power change ∆𝑃𝑁  

In both methods, the critical variable 𝑝𝑓, which represents 

either the maximum power flow or the maximum power flow 

under contingency, is assumed to be deterministic. 

Considering demand uncertainty, random variables should be 

used to represent the uncertain demand peak and consequently 

network utilization. In this way, it can be more practical to 

reflect customer impact on network investment and 

reinforcement horizon, producing cost-reflective use-of-

system price signals.     

III.  PROBABILISTIC POWER FLOW CONSIDERING DEMAND 

UNCERTAINTY 

In this section, the probabilistic contingency power flow 

(PCPF) formulation is proposed to support reliability-based 

probabilistic network pricing. The method refers to the 

probabilistic power flow (PPF) based on the cumulant and 

series expansion methods and provides analytical expressions 

of network PPFs directly from random nodal demand peaks. 

A.  Cumulant Method 

The combined cumulant and Gram-Charlier expansion 

method are used to formulate the probabilistic power flow 

with uncertainties. Cumulants and moments are measures of a 

probability density function (PDF). For a random variable x 

with PDF 𝑓𝑥(𝑥), the moment generating function Φ𝑋(𝑠) is: 

 
Φ𝑋(𝑠) = 𝐸[𝑒𝑠𝑥] = ∫ 𝑒𝑠𝑥

∞

−∞

𝑓𝑥(𝑥) 𝑑𝑥 (6) 

The cumulant generating function Ψ𝑋(𝑠) is often written in 

terms of moment generating function as: 

 Ψ𝑋(𝑠) = lnΦ𝑋(𝑠) (7) 

The nth-order raw moment 𝑚𝑛  and cumulant 𝜆𝑛  are 

computed by taking the nth derivative of each generating 

function with respect to s and evaluating at s=0.  

Given a random variable z, which is the linear combination 

of independent variables 𝑥1, 𝑥2 …𝑥𝑚 

 𝑧 = 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯𝑎𝑚𝑥𝑚 (8) 

The moment generating function Φ𝑍(𝑠)  for the random 

variable z can be determined as: 

 Φ𝑍(𝑠) = 𝐸[𝑒𝑠𝑧] 

= 𝐸[𝑒𝑠(𝑎1𝑥1)𝑠(𝑎2𝑥2)+⋯𝑠(𝑎𝑚𝑥𝑚)] 
(9) 

Because 𝑥1, 𝑥2 …𝑥𝑚 are independent:  

 Φ𝑍(𝑠) = 𝐸[𝑒𝑠(𝑎1𝑥1)𝑒𝑠(𝑎2𝑥2) …𝑒𝑠(𝑎𝑛𝑥𝑚)] (10) 

= Φ𝑋1(𝑎1𝑠)Φ𝑋2(𝑎2𝑠)…Φ𝑋𝑚(𝑎𝑚𝑠) 
The cumulant generating function Ψ𝑍(𝑠) for random 

variable z can be calculated as: 

 
Ψ𝑍(𝑠) = ln(Φ𝑍(𝑠)) 

= Ψ𝑋1(𝑎1𝑠) + Ψ𝑋2(𝑎2𝑠) + ⋯Ψ𝑋𝑚(𝑎𝑚𝑠) 
(11) 

The nth-order cumulant of z can be computed by taking the 

nth derivative of Ψ𝑍(𝑠) respect to s and evaluating it at 𝑠 = 0 

 
𝜆𝑛 = Ψ𝑍

(𝑛)
(0) 

= 𝑎1
𝑛Ψ𝑋1

(𝑛)
(0) + ⋯𝑎𝑚

𝑛 Ψ𝑚
(𝑛)

(0) 
(12) 

B.  Gram-Charlier Expansion Method 

The Gram-Charlier A series allows many PDFs to be 

expressed as a series, consisting of a standard normal 

distribution and derivatives. The series can be defined as: 

 𝑓(𝑥) = ∑𝑐𝑖𝐻𝑒𝑖(𝑥)𝛼(𝑥)

∞

𝑖=0

 (13) 

where 𝑓(𝑥) is the PDF of a random variable x, 𝑐𝑖  is the ith 

series coefficient, 𝐻𝑒𝑖(𝑥) is ith Hermite polynomial and 𝛼(𝑥) 

is the standard normal distribution function. 

The Gram-Charlier form uses moments to compute series 

coefficients, while Edgeworth form uses cumulants due to the 

additive property of cumulants. Given the cumulants for 

distribution in the standard form, the exponential 

representation of the PDF can be expressed in its series 

representation: 

 𝑓(𝑥) = 𝑒(−
𝜆3
3!

𝐷3+
𝜆4
4!

𝐷4−
𝜆5
5!

𝐷5+⋯)𝛼(𝑥) (14) 

where 𝐷𝑛 is the operator of the nth order derivative of the unit 

normal distribution, 𝜆𝑛  is its cumulant, 𝛼(𝑥)  is the general 

normal distribution function with mean 𝜇 and variance 𝛿2  

According to the cumulant concept, the 1st and 2nd order 

cumulants of a probability distribution equal to the mean and 

variance of the distribution. Equation (14) in Edgeworth form 

can be presented in the Maclaurin series in (15).  

𝑓(𝑥) =

[
 
 
 

1 +
(−

𝜆3
3!

𝐷3 +
𝜆4
4!

𝐷4 −
𝜆5
5!

𝐷5 + ⋯)

1!

+
(−

𝜆3
3!

𝐷3 +
𝜆4
4!

𝐷4 −
𝜆5
5!

𝐷5 + ⋯ )

2!

2

+
(−

𝜆3
3!

𝐷3 +
𝜆4
4!

𝐷4 −
𝜆5
5!

𝐷5 + ⋯ )

3!

3

+ ⋯

]
 
 
 

𝛼(𝑥)(15) 

By expanding each term and grouping them by the power 

of D, the PDF can be expressed as: 

𝑓(𝑥) = 𝛼(𝑥) −
𝜆3

3!
𝐷3𝛼(𝑥) +

𝜆4

4!
𝐷4𝛼(𝑥) −

𝜆5

5!
𝐷5𝛼(𝑥)

+ (
𝜆6

6!
+

𝜆3
2

2! 3!2
)𝐷6𝛼(𝑥)

− (
𝜆7

7!
+

2𝜆3𝜆4

2! 3! 4!
) 𝐷7𝛼(𝑥) + ⋯(16) 



 

 

C.  Probabilistic Contingency Power Flow (PCPF) 

Formulation 

To investigate the reliability-based network charges for 

demand with uncertainties, network PCPF are formulated 

directly from demand peak, where the annual peak is modelled 

as a random variable following certain PDF acquired from 

historical data, denoted as 𝐷𝑚~𝑓𝑚(𝑥). 

To determine the PCPF of a certain network component j, 

contingency analysis is first applied to find the contingency 

component (CC) of j, which is defined as that if the 

unavailability of network component i leads to the maximum 

contingency power flow (CPF) along component j, i is 

assigned to the CC of j. The CPF analysis is conducted by 

assuming that each branch is out of service in turn. Then, the 

sensitivity factor (𝑆𝐹𝑗,𝐷𝑚
)  is required to represent the nodal 

demand m contribution to the CPF along network component 

j. Once the CC of j is determined, the 𝑆𝐹𝑗,𝐷𝑚
 for j regarding 

each node is calculated by taking the difference of CPFs with 

and without demand increment under its CC outage condition.  

𝑆𝐹𝑗,𝐷𝑚
=

∆𝐶𝑃𝐹𝑗

∆𝑃𝐷𝑚
(17) 

where ∆𝐶𝑃𝐹𝑗  is the change of CPF along with component j 

due to the incremental nodal demand ∆𝑃𝐷𝑚at m. 

By assuming 𝐷1 …𝐷𝑚  are independent random variables 

and utilizing the cumulant method in (7), cumulant generating 

function and each order cumulant of 𝐷𝑚  can be determined. 

As the maximum 𝐶𝑃𝐹𝑗 can be represented as the sum of nodal 

demand contribution to component j, the 𝑆𝐹𝑗,𝐷𝑚
is taken as the 

weight of each demand node in formulating the cumulant 

generating function of 𝐶𝑃𝐹𝑗  in (8)-(11). Therefore, the nth-

order cumulant 𝜆𝑗,𝑛 of the CPF at network component j can be 

reformulated by using (12): 

 𝜆𝑗,𝑛 = 𝑆𝐹𝑗,𝐷1

𝑛 Ψ𝐷1

(𝑛)
(0) + ⋯+ 𝑆𝐹𝑗,𝐷𝑚

𝑛 Ψ𝐷𝑚

(𝑛)
(0)    (18) 

where Ψ𝐷𝑚
and Ψ𝐷𝑚

(𝑛)(0) denote the cumulant generating 

function and the nth-order cumulant 𝐷𝑚. 

 Combined with Gram-Charlier expansion, the PDF of CPF 

for component j can be expressed by (16) and converted into 

the standard PDF form [22] so that the integral of PDF 

remains 1, denoted as 𝑓𝑝𝑓𝑗
(𝑥).  

IV.  RELIABILITY-BASED PROBABILISTIC NETWORK PRICING 

In this section, the network reinforcement horizon 

determination based on the PCPF acquired from the previous 

section and TVaR method is introduced. The enhanced 

reliability-based probabilistic Long-run incremental cost (PR-

LRIC) network pricing method is proposed to generate the 

final deterministic charge signals to network users.  

A.  Reinforcement Horizon Using Tail Value at Risk (TVaR) 

Figure 1 illustrates the calculation of TVaR for 

probabilistic contingency power flow (PCPF). Once the PDF 

of PCPF 𝑓𝑝𝑓𝑗
(𝑥)is formulated, the projection of 𝑓𝑝𝑓𝑗

(𝑥) after 

𝑛𝑗  years of load growth can be represented as an increasing 

function of𝑓𝑝𝑓𝑗
(𝑥):   

 𝑔𝑗(𝑥) = 𝑓𝑝𝑓𝑗
(

𝑥

(1 + 𝑟)𝑛𝑗
)  (19) 

where r is the load growth rate.  

The tail value at risk (TVaR) is used to calculate the 

expected overloading level of a network component under 

contingency after 𝑛𝑗  year load growth. The expected loading 

level in contingency is:  

 

𝑇𝑉𝑎𝑅𝑔𝑗
(𝑥) =

∫ 𝑥 · 𝑔
𝑗
(𝑥) 𝑑𝑥

∞

𝐶

1 − 𝐺𝑗(𝐶)
 

=
∫ 𝑥 · 𝑓𝑝𝑓𝑗

(
𝑥

(1 + 𝑟)𝑛𝑗
) 𝑑𝑥

∞

𝐶

1 − 𝐹𝑝𝑓𝑗
(

𝐶
(1 + 𝑟)𝑛𝑗

)
 

 (20) 

where 𝐺𝑗(𝑥) and 𝐹𝑝𝑓𝑗
(𝑥) are the cumulative distribution 

functions (CDFs) of 𝑔𝑗(𝑥) and 𝑓𝑝𝑓𝑗
(𝑥)respectively, C is the 

rated capacity of the network component, 1-𝐺𝑗(C) denotes the 

probability of overloading. 

With the incremental nodal demand ∆𝑃𝑁 , the maximum 

CPF under 𝑓𝑝𝑓𝑗
(𝑥)  increases by ∆𝑝𝑓  and the PDF of 

maximum CPF can be formulated as 𝑓𝑝𝑓𝑗
(𝑥 − ∆𝑝𝑓).  The 

projected PDF 𝑔𝑖𝑛𝑐𝑟𝑒𝑗
(𝑥)  of maximum CPF and expected 

loading level 𝑇𝑉𝑎𝑅𝑔𝑖𝑛𝑐𝑟𝑒𝑗
(𝑥) after 𝑛𝑗𝑛𝑒𝑤 years of load growth 

can be represented as: 

 𝑔𝑖𝑛𝑐𝑟𝑒𝑗
(𝑥) = 𝑓𝑝𝑓𝑗

(
𝑥 − ∆𝑝𝑓

(1 + 𝑟)𝑛𝑗𝑛𝑒𝑤
) (21) 

   𝑇𝑉𝑎𝑅𝑔𝑖𝑛𝑐𝑟𝑒𝑗
(𝑥) =

∫ 𝑥 · 𝑔𝑖𝑛𝑐𝑟𝑒𝑗
(𝑥)𝑑𝑥

∞

𝐶

1 − 𝐺𝑖𝑛𝑐𝑟𝑒𝑗
(𝐶)

 (22) 

where 𝐺𝑖𝑛𝑐𝑟𝑒𝑗
(𝑥)  is the cumulative distribution functions of 

𝑔𝑖𝑛𝑐𝑟𝑒𝑗
(𝑥), 1 − 𝐺𝑖𝑛𝑐𝑟𝑒𝑗

(𝐶) is the probability of overloading. 

The TLoL from (3) is defined as the maximum expected 

overloading level under network contingency. The network 

component reinforcement is required when TVaR exceeds the 

sum of rated capacity and TLoL. Then by setting the TLoL as 

the threshold of the overloading level and assuming after 𝑛𝑗 

and𝑛𝑗𝑛𝑒𝑤 years the overload of component j reaches the 

Fig. 1. Tail value at risk of contingency power flow PDF after years load 

growth that triggers the reinforcement 



 

 

threshold, two implicit functions are formulated to represent 

the trigger of the reinforcement:  

 𝑅(𝑛𝑗 , 𝑥) = 𝑇𝑉𝑎𝑅𝑔𝑗(𝑥) − (𝐶 + 𝑇𝐿𝑜𝐿) = 0 (23) 

 𝑅(𝑛𝑗𝑛𝑒𝑤, 𝑥) = 𝑇𝑉𝑎𝑅𝑔𝑖𝑛𝑐𝑟𝑒𝑗
(𝑥) − (𝐶 + 𝑇𝐿𝑜𝐿) = 0 (24) 

Equation (23) and (24) can be solved by using the Newton–

Raphson method, and the solved 𝑛𝑗 and𝑛𝑗𝑛𝑒𝑤 are 

reinforcement horizons of component j without and with the 

incremental nodal demand.  

B.  Network Component Pricing 

As long as the reinforcement horizons of components are 

acquired, the present value (𝑃𝑉𝑗) of future reinforcement of 

component j can be calculated via its asset cost and 

reinforcement horizon: 

 𝑃𝑉𝑗 =
𝐴𝑠𝑠𝑒𝑡𝑗

(1 + 𝑑)𝑛𝑗
 (25) 

where d is the discount rate, 𝑛𝑗 is the calculated reinforcement 

horizon from (23) 

The present value of component j with additional nodal 

power withdrawn or injection ∆𝑃𝑁 can be calculated as: 

 𝑃𝑉𝑗𝑛𝑒𝑤 =
𝐴𝑠𝑠𝑒𝑡𝑗

(1 + 𝑑)𝑛𝑗𝑛𝑒𝑤
 (26) 

where 𝑛𝑗𝑛𝑒𝑤 is the calculated reinforcement horizon from (24) 

The change in the present value as a result of the nodal 

injection or withdrawal is given by: 

                          ∆𝑃𝑉𝑗 = 𝑃𝑉𝑗𝑛𝑒𝑤 − 𝑃𝑉𝑗 (27) 

The annualized incremental cost (IC) of network 

component j is the difference in the present value of the future 

investment as a result of ∆𝑃𝐷𝑚 at demand node m multiplied 

by an annuity factor: 

 𝐼𝐶𝑗 = ∆𝑃𝑉𝑗 × 𝑎𝑛𝑛𝑢𝑖𝑡𝑦𝑓𝑎𝑐𝑡𝑜𝑟 (28)     

Therefore, the final LRIC to support node m is determined 

by the sum of the incremental costs of all its supporting 

components:  

                         𝐿𝑅𝐼𝐶𝑚 =
∑ 𝐼𝐶𝑗𝑗

∆𝑃𝐷𝑚
                            (29) 

C.  Flowchart 

The implementation of the proposed pricing method is 

shown in Figure 2. For pricing a certain node, the sampled 

historical demands and forecast demand at system peak time 

are required to formulate the PDF of nodal demand. Combined 

with the system topology information, it is then to conduct 

contingency flow analysis and sensitivity analysis to calculate 

the TLoLs and formulate PCPFs of supporting components. It 

is followed by using TVaR to determine network 

reinforcement horizons under demand uncertainties and nodal 

injection. Component incremental prices are calculated and 

summed up to form final nodal network charges. The 

proposed method can be easily applied to calculating network 

charges on demand in a distribution system. 

V.  DEMONSTRATION 

A.  System Description 

A 15-bus distribution network shown in Figure 3 is used for 

demonstration. The probability density functions of nodal 

peak demand at bus 1001, 1003, 1006, 1007, 1009 and 1013 

are assumed to follow the probability distributions of Normal 

(20.5,0.8), Normal(25,2), Uniform(6,9), Normal(12,0.5),  

Normal(23,1) and Gamma(7.5,0.5), respectively. Before the 

load flow modelling, all nodal demands are scaled by their 

coincidence factors. For simplicity, all coincidence factors are 

assumed to be 1. The discount rate and annuity factors of 

network assets are assumed to be 7.4% and 7.8%. The load 

growth rate is 2%.  

Table I presents the TLoL of each network branch and its 

corresponding CC. For reliability indexes, mean time to repair 

for branches connected of 66KV-66KV busbars are 7.5 

hr/time and the mean time to repair of the rest branches are 4 

hr/time. Failure rates of all components are assumed to be 

identical as 0.5 time/yr. 
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Fig. 2. Flowchart of reliability-based probabilistic pricing method Fig. 3.  System topology of the test system 

 



 

 

B.  Probabilistic Contingency Power Flow (PCPF) 

The 8th order expansion is used to formulate the PDFs of 

CPFs because of the better performance in fitting the tail part 

of probability density distributions and smaller overall 

variance. The PDF curves of the example branches are shown 

in Figure 4 and compared with simulated results from the 

Monte-Carlo method of 3000 iterations.   

It can be observed that the PDF curves of CPF generated 

from analytical expressions highly coincide with the simulated 

CPF probability density distributions, especially in the tail 

part. It indicates the effectiveness of the proposed method to 

approximate PCPFs with analytical expressions. 

C.  Pricing Result 

Table II gives the breakdown of reinforcement horizons of 

branches with (𝑛𝑛𝑒𝑤) and without (n) the incremental demand 

at example nodes under the proposed PR-LRIC method. It also 

compares results with those from P-LRIC and LRIC methods.  

At bus 1003, the incremental demand contributes positively 

to the utilization levels of all supporting branches. Expect L4, 

the reinforcement horizons (n) of those positive branches 

under PR-LRIC method are earlier than the horizons 

calculated from R-LRIC method while having deferrals 

compared with horizons from the LRIC method. For L4, 

although the reinforcement horizon (n) from PR-LRIC is 

23.27yr which is smaller than the horizons computed by using 

LRIC (23.73yr) and R-LRIC (26.28yr), the incremental 

demand has the least impact on bringing forward the 

reinforcement of L4. Incremental demand at 1003 forces 

1.68yr, 1.98yr and 4.15yr earlier reinforcement of L4 when 

using PR-LRIC method R-LRIC and LRIC method 

respectively. For bus 1006, although it is supported by L4, it 

does not contribute to the contingency power flow at L4 so 

that the reinforcement horizon (n) and the horizon due to 

incremental demand (𝑛𝑛𝑒𝑤)remain the same under reliability-

based methods (PR-LRIC and R-LRIC). By contrast, under 

the original LRIC method, the incremental demand defers the 

reinforcement of L4 by 4.03yr due to the negative contribution 

of peak power flow, creating a negative branch incremental 

charge. The reinforcement horizons (n and 𝑛𝑛𝑒𝑤) of the rest 

supporting branches for bus 1006 follow the similar rule as 

bus 1003, i.e. the results from PR-LRIC method are located 

between those acquired from R-LRIC and LRIC. 

 
TABLE I  

CONTINGENCY COMPONENT (CC) AND TOLERANCE LOSS OF LOAD (TLOL) OF 

NETWORK BRANCHES 

 
TABLE II 

BREAKDOWN OF REINFORCEMENT HORIZONS UNDER PR-LRIC R-LRIC AND 

LRIC METHOD  
 

Branch CC 
TLoL 

(MW) 
Branch CC 

TLoL 

(MW) 

L1 L5 2.40 L13 L12 4.50 

L2 L3 3.69 L14 L15 4.50 

L3 L2 3.71 L15 L14 4.50 

L4 L2 2.40 L16 L17 2.57 

L5 L1 2.40 L17 L16 2.47 

L6 L22 0.75 L18 L22 0.75 

L7 L22 0.75 L19 L22 0.75 

L8 L21 1.02 L20 L21 1.02 

L9 L20 1.02 L21 L20 1.02 

L10 L22 0.75 L22 L18 0.52 

L11 L17 0.00 L23 L16 2.03 

L12 L13 4.50 
   

B
u

s 

Branch 
PR-LRIC (yr) R-LRIC (yr) LRIC (yr) 

n n𝑛𝑒𝑤 n n𝑛𝑒𝑤 n n𝑛𝑒𝑤 

1
0
0
3

  
 

L2 17.86 16.68 18.70 17.45 15.10 13.83 

L3 17.67 16.49 18.50 17.25 14.88 13.66 

L4 23.27 21.59 26.68 24.70 23.73 19.58 

L14 27.98 26.15 29.12 27.14 23.73 21.75 

L15 27.98 26.15 29.12 27.14 23.73 21.75 

L16 45.52 45.42 45.67 45.57 41.52 41.42 

L17 47.33 47.23 47.51 47.40 43.51 43.41 

L23 38.10 38.22 38.27 38.39 33.38 33.68 

1
0
0
6
 

L2 17.86 16.69 18.70 17.45 15.10 13.90 

L3 17.67 16.49 18.50 17.25 14.88 13.59 

L4 23.27 23.27 26.68 26.68 23.73 27.76 

L16 45.52 45.42 45.67 45.56 41.52 41.41 

L17 47.33 47.23 47.51 47.40 43.51 43.40 

L23 38.10 38.23 38.27 38.40 33.38 33.69 

L3

L9

L12

L23

 
 

Fig. 4.  PDFs of probabilistic contingency power under combined cumulant 

and expansion method (Red) and Monte-Carlo method (Gray) 



 

 

TABLE III  

PRICING RESULTS UNDER PROPOSED PR-LRIC METHOD AND COMPARISON 

WITH R-LRIC AND LRIC 

 

Aforementioned results illustrate that the proposed method 

preserves the ability to convert demand reliability requirement 

and network reliability indices into extra capacities of network 

components and lead to reinforcement deferrals. It meanwhile 

uses probabilistic contingency peak power flows rather than 

deterministic values to refine reinforcement horizons without 

incremental demand and indicates that demand uncertainty 

limits reinforcement deferrals. 

The numerical final pricing results (unit charges) of the PR-

LRIC method are shown in Table III and compared with the 

results from deterministic reliability-based LRIC pricing (R-

LRIC) and traditional LRIC pricing (LRIC).  

From Table III, it can be observed that buses 1001, 1003 

and 1009, charges from PR-LRIC are 42.4%, 37% and 7% 

lower than charges from LRIC. Those buses pay for using the 

same group of branches, however, in the PR-LRIC the 

reliability tolerance allows reinforcement deferrals of branches 

so that buses have lower charges under PR-LRIC compared to 

charges from LRIC. For buses 1006 and 1007, the charges 

from PR-LRIC are 11122.3 £/MW/yr and 6854.1 £/MW/yr 

while the charges from LRIC for the two buses are reduced by 

54% and 10.7%. It is because that under LRIC method buses 

1006 and 1007 obtain the reward (negative charge) for using 

L4, however, under PR-LRIC method, they do not contribute 

to CPF of L4, so that they do not have such a reward or 

charge. For bus 1013, the charge from PR-LRIC (1256.6 

£/MW/yr) is about four times smaller than that from LRIC 

(5291.4 £/MW/yr). This is due to that bus 1007 is not 

responsible for CPFs of branch L6, L7, L10, L18 and L19 

under PR-LRIC. On the contrary, it positively contributes to 

power flows on those branches under LRIC and get charged 

for using them. Compared to results from the R-LRIC method, 

the proposed method does not produce big charge difference 

on buses 1001, 1003, 1006 and 1007. This is due to that the 

assumed variances of nodal demand peaks in the test system 

are considerably small, demands with uncertainty in the 

probabilistic method can be regarded as deterministic values 

in R-LRIC method, and therefore the results from two 

methods are approximate.   

D.  Pricing Sensitivity to Nodal Uncertainty  

This section investigates the impact of changing demand 

uncertainty on network reinforcement horizons and charges 

under the proposed method. Figure 5 presents the 

reinforcement horizons of example branches with specified 

nodal demand peak variance reductions. The original demand 

peak variances stated in test system are assigned as the 100% 

variance scenario, and the calculated results from the R-LRIC 

method is denoted as 0% variance scenario where the 

deterministic value is on used and variances equal to 0. The 

reinforcement horizons under different variance scenarios are 

represented in percentages compared to the result of 0 

variance scenario.   

It can be observed that with the variances of demand peak 

at buses 1001, 1003, 1007 and 1009 increase from 0% to 

100%, the reinforcement horizons of branches L1, L2, L16 

and L6 drop by 1.1%, 4.5%, 0.3% and 1.6% respectively, 

indicating that the lager demand uncertainty the sooner the 

reinforcement is. The reinforcement horizon of branch L2 is 

brought forward significantly when demand variance at bus 

1003 increases from 0 to base variance scenario. It is mainly 

due to that the scale of base variance at bus 1003 is 

considerably large compared to the variance of rest nodal 

demands. In addition, the demand at bus 1003 contributes a 

large proportion to the power flow at branch L2. Theoretically, 

the reinforcement horizon from the proposed method equals 

that from the R-LRIC method at 0 variance scenario. With the 

growing scale of demand peak uncertainty, earlier network 

reinforcement is required.  

Bus PR-LRIC(£) R-LRIC(£) LRIC(£) 

1001 13589.5 13613.1 23607.8 

1003 23240.4 23077.7 36951.3 

1006 11122.3 11156.1 5104.6 

1007 6854.1 6883.6 6124.1 

1009 6438.4 6809.6 6916.3 

1013 1256.6 1418.1 5291.4 

 
 

Fig. 5.  Reinforcement horizon (in percentage) compared to R-LRIC method 

result under different uncertainty scales 

 

 
Fig. 6.  Incremental charges (in percentage) compared to R-LRIC method 
under different demand uncertainty scales 

 
 



 

 

Figure 6 presents the trends of incremental charges of 

branches L1, L2, L16 and L6 paid by demand nodes 1001, 

1003, 1007 and 1009 respectively, against variances of nodal 

demand peaks expanding from 0% scenario to 100% scenario 

and beyond.  

At 0% variance scenario, the incremental charges equal to 

the charges from R-LRIC method and decrease to the lowest 

charges at 90%, 50%, 170% and 60% variance scenario for 

L1, L2, L16 and L6 respectively. The lowest charges are not 

lower than 99% of incremental charges at 0 variance scenario. 

Beyond the lowest point, the incremental charges increase at a 

different scale with growing variances of corresponding nodal 

demands. The PCPFs of branches L1 and L6 are resulted from 

solely supporting demand at bus 1001 and bus 1009, the 

uncertainty of those demands directly affects the PCPFs, so 

the increasing rates of branches incremental costs are much 

higher. Compared to the charge on bus 1009 for using branch 

L6, a larger base variance of the demand at bus 1001 leads to a 

higher growth rate of the incremental charge of branch L1. For 

branches L2 and L16, the probabilistic contingency power 

flows are formed by joint nodal demand, which means the 

PDFs of L2 and L6 CPF are formulated as the combination of 

weighted demand peak levels and uncertainty scales. The 

variance of demand at bus 1003 has a significant effect on the 

PDF of L2 CPF, while demand variance at bus 1007 is tiny 

and makes a small contribution to L6 CPF. Thus, with 

increasing uncertainty scale, the growth rate of incremental 

charge on bus 1003 at L2 is apparently greater than the charge 

on bus 1007 at L6. 

E.  Pricing Sensitivity to Network Reliability  

This section studies the impact of network reliability under 

the proposed method. Based on different failure rates, the 

incremental charges of example connection lines under 

different nodal uncertainty scenarios are presented in Figure 7. 

For failure rate at 0.1 time/yr to 0.4 time/yr, the incremental 

charges of branch L1 are insignificantly diverse with the 

uncertainty of demand 1001 increasing from 25% 𝛿2  to 

200%𝛿2. While as the failure rate increases to 1 time/yr, the 

incremental charge of L1 is £3057.2 at 25%𝛿2 scenario and 

£3291.5 at 200% 𝛿2 scenario. The diversification of the 

incremental charge reaches 7.7%. For the incremental charges 

of L2 on bus 1003, L16 on 1007 and L6 on 1009, the charges 

under different demand uncertainty scenarios highly coincide 

unless failure rates of branches L2, L16 and L6 exceed 0.4 

time/yr, 0.8 time/yr and 0.3 time/yr respectively. When the 

failure rate rises to 1 time/yr, the incremental charge of branch 

L2 on bus 1003 at large uncertainty scenario (150% 𝛿2 ) 

increases by 9% compared to small uncertainty scenario 

(12.5%𝛿2 ). The incremental charge of branch L16 for bus 

1007 has a small difference (4%) between small uncertainty 

scenario (25%𝛿2) and large uncertainty scenario (200%𝛿2). 

The incremental charge of L16 for bus 1009 at large 

uncertainty scenario (400%𝛿2) is 26% greater than that in the 

small uncertainty scenario (50%𝛿2).  

Under the proposed method, for a more robust network, the 

network charge is less when connecting with identical 

uncertain demand. Moreover, the charge signals vary 

insignificantly with demand uncertainty change, indicating 

that the robustness can offset the uncertainty effect on the 

network charge.  Vice versa, a less reliable network generates 

higher charges, and the network charges are more sensitive to 

the uncertainty variance.  

F.  Revenue Reconciliation  

It should be noted that pricing results in this paper are not 

the final tariffs applied to users but the incremental charge. 

Generally, the incremental charge cannot recover the revenue 

 
 

Fig. 7.  Incremental charges with varying failure rate under different 

uncertainty scenarios 



 

 

targets for distribution network operators (DNOs). DNOs are 

allowed by the regulator to recover their network cost and earn 

a fixed rate of return through revenue reconciliation. The 

revenue reconciliation 1) calculates the users’ incremental 

charge; 2) allocates direct/indirect operating cost to users; 3) 

scales up charges by a fixed adder or fixed multiplier method 

so that the total revenue collected from network charges can 

meet the revenue target for DNOs [24] [25].    

By using the fixed adder method, figure 8 compares unit 

charges before and after revenue reconciliation, and figure 9 

compares the revenue recovery from the traditional LRIC 

method and the proposed PR-LRIC method. The allowed 

revenue is assumed to be £4 million. The fixed adders are 

21767.6 £/MW/yr and 27260.3 £/MW/yr for LRIC and PR-

LRIC respectively. The unit charges after reconciliation 

follow the same pattern as results before reconciliation. 

However, considering the demand size, the total revenue 

recovery has a different pattern. For example, the unit charge 

of bus 1006 is the third highest in PR-LRIC, but the total 

recovery is the lowest due to its smallest demand capacity. 

The results in figure 9 are the total annual charges after 

revenue reconciliation, calculated by using unit charges, 

demand and scaling. With the LRIC method, the revenues 

recovered from demand at bus 1001 and 1003 are the highest 

(£0.93m and £1.47m respectively), which is due to their large 

demand size and big contributions on the peak demand of their 

supporting circuits. Under the PR-LRIC method, revenue 

recoveries from demands at bus 1001 and 1003 reduced by 2% 

and 5.1% to £0.84m and £1.26m. The reduction is mainly 

compensated by the increasing recovery proportion of bus 

1006, 1007 and 1009, with increases of 2.2%, 1.9%, and 2.9%, 

respectively. The recovery from demand at bus 1013 has a 

small increment from £0.41m to £0.43m. The reason of those 

reductions and increments are due to the difference between 

the pricing principles of LRIC and PR-LRIC. PR-LRIC 

considers demand uncertainty and network reliability but 

original LRIC does not. Uncertainty produces unexpected 

network cost element, as the maximum of the uncertain 

demand should be accommodated by network capacity. By 

contrast, network reliability allows the certain load to be 

curtailed while reliability standards are met, which can in turn 

release some network capacity and thus reduce network costs. 

For example, in PR-LRIC, uncertainties of 1001 and 1003 lead 

to earlier network reinforcements and increase network cost 

compared to LRIC.  By contrast, circuits supporting buses 

1001 and 1003 have large TLOLs (shown in Table I) to 

tolerate demand uncertainties, therefore, time to reinforce 

those circuits is deferred compared to results in LRIC. Thus, 

the nodal charges for 1001 and 1003 are reduced. The 

calculated final network charges for buses 1001 and 1003 is 

reduced compared to results from the original LRIC because 

both uncertainty and reliability are considered. They also 

cause reductions in total revenue recovery from the two buses.     

To justify the effectiveness of the proposed pricing method 

in incentivizing customers to reduce uncertainties, results in 

figure 7 are provided. It depicts that charges are all positive 

relative to the scale of demand uncertainties. For buses 1001, 

1003, 1007 and 1009, reducing uncertainty from maximum 

scenario to minimum scenario leads to 234 £/MW/yr, 559 

£/MW/yr, 46 £/MW/yr and 256 £/MW/yr unit charge 

reductions respectively. The designed network charge is 

effective to reflect this price change due to the uncertain 

variation so that incentivize customers to reduce uncertainties. 

VI.  DISCUSSION 

This paper designs a novel network pricing method for the 

incremental charge, considering the users’ uncertainties in the 

pricing signal for the first time. The revenue collected from 

the incremental charge takes a large proportion of total 

revenue. Meanwhile, among all charge elements, the 

incremental charge is the most indicative cost signal to 

network users reflecting the users’ energy usage behaviours.  

In UK practice, demand uncertainty is not considered in 

any pricing methods and only treated in price control. The 

network charge is set at the upfront of each price control 

period. During a price control period, if the difference between 

incurred network cost and forecast network cost exceeds a 

threshold, the electricity distribution companies are allowed 

by the regulator to revise their network charges [25]. 

However, the ex-post charge revision and lack of uncertainty 

Fig.  9.  Total revenue recoveries from demands  

Fig. 8.  Unit charge before and after revenue reconciliation  



 

 

signal disable users’ abilities to respond to the pricing signal. 

Whereas, the proposed pricing method provides users ex-ante 

network charges consisting of clear uncertainty signal.  

The proposed method requests users to submit their 

forecast demands during peak periods and combines with 

historical peak demands of users to formulate probabilistic 

demands pattern. As a monopoly industry, network charge 

should comply with many principles set by regulators and 

‘transparency’ is one of them. The pricing methodology must 

be publicly available and DNOs are compulsory to provide 

users with their forecast network charges if requested. Users 

thus can obtain informative network charges by submitting 

different forecast peak demands. If the forecast demand is not 

accurate, the DNO would treat this user with large uncertainty 

in next year and increase network charges produced by the 

proposed method to indicate that. Thus, the proposed pricing 

method can incentivize users to: 1) reduce peak demand, 

which can reduce the overall network utilisation and 2) reduce 

peak demand volatility, which can reduce uncertain network 

utilisation that triggers earlier network investment. In this way, 

DNOs can avoid or defer unnecessary reinforcement while 

still connecting users to existing networks. The overall 

benefits are: i) lower network investment cost for DNOs, ii) 

and reduced network charges for network users.  

The proposed pricing method emphasises the impact of 

short-term uncertainty on network cost allocation. However, 

the long-term uncertainty (e.g. load growth rate) is considered 

to have a broader impact on the superstructure of the network 

charge paradigm including network regulatory framework and 

DNO investment planning. Paper [6] has modelled uncertain 

load growth by using fuzzy set theory, while other methods 

such as stochastic modelling and ambiguity sets via Robust 

Optimisation could be also used. Dynamic Programming 

could be used to evaluate the impact of long growth 

uncertainty on network investment planning. A comprehensive 

network pricing method considering load growth uncertainty 

will be studied in future work.   

VII.  CONCLUSION  

This paper proposes a reliability-based probabilistic 

network pricing method which computes nodal network 

charges considering the uncertainty of demand, providing 

pricing signals to demand under different uncertainty levels 

and network reliability conditions. Extensive demonstration on 

a practical 15-bus system produces the following findings: 

 Reinforcement deferrals of network components can be 

obtained by considering tolerance loss of load as extra 

capacity during contingencies. However, demand 

uncertainties offset the deferral, which expand potential 

network overloading under contingency. Reducing demand 

uncertainty can thus further defer network reinforcement.  

 For a specific network component, its reinforcement 

horizon is sensitive to demand uncertainty that contributes 

to the largest proportion of its contingency power flow. 

The overall uncertainty of a specific network component 

depends on the joint effect of sensitivity factors and 

uncertainty scales of all connected demands.  

 The proposed method produces nodal network charge 

signals to incentive demand to reduce their uncertainties by 

lowering their use-of-system costs. The pricing signals also 

indicate that networks with high reliable performance have 

smaller investment cost under demand uncertainty, thus 

producing low charges.      

This paper designs a new network pricing that reflects the 

actual cost of the distribution network to supply uncertain 

demand considering network reliability levels. It can generate 

pricing signals to guide better siting and sizing of future 

demand and incentivize networks users to improve their 

behaviour predictability. This can further promote the 

utilisation of existing systems, minimizing investment costs 

for network operators and reducing charges for network users.  
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