111 research outputs found

    A phage-displayed peptide recognizing porcine aminopeptidase N is a potent small molecule inhibitor of PEDV entry

    Get PDF
    Three phage-displayed peptides designated H, S and F that recognize porcine aminopeptidase N (pAPN), the cellular receptor of porcine transmissible gastroenteritis virus (TGEV) were able to inhibit cell infection by TGEV. These same peptides had no inhibitory effects on infection of Vero cells by porcine epidemic diarrhea virus (PEDV). However, when PEDV, TGEV and porcine pseudorabies virus were incubated with peptide H (HVTTTFAPPPPR), only infection of Vero cells by PEDV was inhibited. Immunofluorescence assays indicated that inhibition of PEDV infection by peptide H was independent of pAPN. Western blots demonstrated that peptide H interacted with PEDV spike protein and that pre-treatment of PEDV with peptide H led to a higher inhibition than synchronous incubation with cells. These results indicate direct interaction with the virus is necessary to inhibit infectivity. Temperature shift assays demonstrated that peptide H inhibited pre-attachment of the virus to the cells

    DualMatch: Robust Semi-Supervised Learning with Dual-Level Interaction

    Full text link
    Semi-supervised learning provides an expressive framework for exploiting unlabeled data when labels are insufficient. Previous semi-supervised learning methods typically match model predictions of different data-augmented views in a single-level interaction manner, which highly relies on the quality of pseudo-labels and results in semi-supervised learning not robust. In this paper, we propose a novel SSL method called DualMatch, in which the class prediction jointly invokes feature embedding in a dual-level interaction manner. DualMatch requires consistent regularizations for data augmentation, specifically, 1) ensuring that different augmented views are regulated with consistent class predictions, and 2) ensuring that different data of one class are regulated with similar feature embeddings. Extensive experiments demonstrate the effectiveness of DualMatch. In the standard SSL setting, the proposal achieves 9% error reduction compared with SOTA methods, even in a more challenging class-imbalanced setting, the proposal can still achieve 6% error reduction. Code is available at https://github.com/CWangAI/DualMatchComment: 14 pages, 8 figures, Accepted by ECMLPKDD 202

    Role of Silica Fume in Compressive Strength of Cement Paste, Mortar, and Concrete

    Get PDF
    Controversy exists as to why silica fume increases the strength of concrete when it is used as a partial replacement for cement. Some evidence supports the view that the increase in strength is due to an increase in the strength of the cement paste constituent of concrete. However, contradictory evidence exists that shows no increase in the strength of cement paste, but substantial increases in concrete strength, when silica fume is used. The latter evidence is used to support the theory that silica fume strengthens concrete by strengthening the bond between cement paste and aggregate. This study is designed to explain the contradictory evidence and establish the role played by silica fume in controlling the strength of concrete and its constituent materials. These goals are accomplished using cement pastes, mortars, and concretes with water-cementitious material ratios ranging from 0.30 to 0.39. Mixtures incorporate no admixtures, a superplasticizer only, or silica fume and a superplasticizer. The research demonstrates that replacement of cement by silica fume and the addition of a superplasticizer increases the strength of cement paste. It also demonstrates that cement paste specimens, with or without silica fume, can exhibit reduced strength compared to other specimens with the same water-cementitious material ratio if the material segregates during fabrication, thus explaining some earlier experimental observations. The segregation of cement paste is caused by high superplasticizer dosages that do not cause segregation of concrete with the same water-cementitious material ratio. Concrete containing silica fume as a partial replacement for cement exhibits an increased compressive strength because of the improved strength of its cement paste constituent. Changes in the paste-aggregate interface caused by silica fume appear to have little effect on the uniaxial compressive strength of concrete

    Illumination Controllable Dehazing Network based on Unsupervised Retinex Embedding

    Full text link
    On the one hand, the dehazing task is an illposedness problem, which means that no unique solution exists. On the other hand, the dehazing task should take into account the subjective factor, which is to give the user selectable dehazed images rather than a single result. Therefore, this paper proposes a multi-output dehazing network by introducing illumination controllable ability, called IC-Dehazing. The proposed IC-Dehazing can change the illumination intensity by adjusting the factor of the illumination controllable module, which is realized based on the interpretable Retinex theory. Moreover, the backbone dehazing network of IC-Dehazing consists of a Transformer with double decoders for high-quality image restoration. Further, the prior-based loss function and unsupervised training strategy enable IC-Dehazing to complete the parameter learning process without the need for paired data. To demonstrate the effectiveness of the proposed IC-Dehazing, quantitative and qualitative experiments are conducted on image dehazing, semantic segmentation, and object detection tasks. Code is available at https://github.com/Xiaofeng-life/ICDehazing

    Calibration of the Radical Installation Limit Error of the Accelerometer in the Gravity Gradient Instrument

    Get PDF
    Gravity gradient instrument (GGI) is the core of the gravity gradiometer, so the structural error of the sensor has a great impact on the measurement results. In order not to affect the aimed measurement accuracy, limit error is required in the installation of the accelerometer. In this paper, based on the established measuring principle model, the radial installation limit error is calibrated, which is taken as an example to provide a method to calculate the other limit error of the installation under the premise of ensuring the accuracy of the measurement result. This method provides the idea for deriving the limit error of the geometry structure of the sensor, laying the foundation for the mechanical precision design and physical design

    Mathematical Modeling of the Working Principle of Gravity Gradient Instrument

    Get PDF
    Gravity field is of great significance in geoscience, national economy and national security, and gravitational gradient measurement has been extensively studied due to its higher accuracy than gravity measurement. Gravity gradient sensor, being one of core devices of the gravity gradient instrument, plays a key role in measuring accuracy. Therefore, this paper starts from analyzing the working principle of the gravity gradient sensor by Newton's law, and then considers the relative motion between inertial and non-inertial systems to build a relatively adequate mathematical model, laying a foundation for the measurement error calibration, measurement accuracy improvement

    Wafer-scale arrayed p-n junctions based on few-layer epitaxial GaTe

    Full text link
    Two-dimensional (2D) materials have attracted substantial attention in electronic and optoelectronic applications with superior advantages of being flexible, transparent and highly tunable. Gapless graphene exhibits ultra-broadband and fast photoresponse while the 2D semiconducting MoS2 and GaTe unveil high sensitivity and tunable responsivity to visible light. However, the device yield and the repeatability call for a further improvement of the 2D materials to render large-scale uniformity. Here we report a layer-by-layer growth of wafer-scale GaTe with a hole mobility of 28.4 cm2/Vs by molecular beam epitaxy. The arrayed p-n junctions were developed by growing few-layer GaTe directly on three-inch Si wafers. The resultant diodes reveal good rectifying characteristics, photoresponse with a maximum photoresponsivity of 2.74 A/W and a high photovoltaic external quantum efficiency up to 62%. The photocurrent reaches saturation fast enough to capture a time constant of 22 {\mu}s and shows no sign of device degradation after 1.37 million cycles of operation. Most strikingly, such high performance has been achieved across the entire wafer, making the volume production of devices accessible. Finally, several photo-images were acquired by the GaTe/Si photodiodes with a reasonable contrast and spatial resolution, demonstrating for the first time the potential of integrating the 2D materials with the silicon technology for novel optoelectronic devices

    Concurrent sintilimab with sequential chemoradiotherapy for unresectable, stage III non-small cell lung cancer: a retrospective study

    Get PDF
    BackgroundConcurrent programmed death 1 (PD-1) or programmed death ligand 1 (PD-L1) inhibitors with sequential chemoradiotherapy (SCRT) have been reported in only a limited number of studies involving patients with unresectable stage III non-small-cell lung cancer (NSCLC). A retrospective study was conducted to systematically analyze the efficacy and safety of the emerging therapy among Chinese patients.Materials and methodsWe included patients with unresectable, stage III NSCLC who received concurrent sintilimab with chemotherapy or chemotherapy alone for 3-6 cycles, followed by radical radiotherapy at the First Hospital of Jilin University from Dec 15, 2019, to Jul 15, 2022. The primary end point was the objective response rate (ORR). The secondary end points included progression-free survival (PFS), overall survival (OS), 12-month and 18-month PFS rates, the duration of response (DoR), and safety.ResultsThe retrospective study involved 77 patients, of which 49 receiving concurrent sintilimab with SCRT were assigned to cohort A, and 28 receiving SCRT alone were assigned to cohort B. The ORR was significantly higher in cohort A (79.6%, 95% CI 65.7–89.8) than in cohort B (35.7%, 95% CI 18.6–55.9) (p<0.001). Median PFS was significantly longer in cohort A than in cohort B (NR [95% CI 21.4–NR] vs. 16.0 months [13.0–22.5]; HR 0.375, 95% CI 0.192–0.735; p=0.003). The PFS rates at 12 and 18 months were 84.8% (95% CI 75.0–95.9) and 71.3% (95% CI 58.7–86.7) in cohort A and 75.0% (95% CI 60.6–92.9) and 38.3% (95% CI 23.7–61.7) in cohort B, respectively. Grade 3 or 4 adverse events (AEs) were reported in 19 patients (38.8%) and seven patients (25.0%) in two cohorts, respectively. Grade 3 or 4 pneumonitis or immune-mediated pneumonitis, radiation pneumonitis, and pneumonia occurred in five (10.2%), four (8.2%), and two (4.1%) cohort A patients, and zero, two (7.1%), and two (7.1%) cohort B patients, respectively. Only cohort A reported AE leading to death in one (2.0%) patient (immune-mediated pneumonitis).ConclusionConcurrent sintilimab with SCRT resulted in a significantly better ORR and longer PFS than SCRT alone, with manageable safety profiles in Chinese patients with unresectable stage III NSCLC

    Ethylene-Induced Hydrogen Sulfide Negatively Regulates Ethylene Biosynthesis by Persulfidation of ACO in Tomato Under Osmotic Stress

    Get PDF
    A number of recent studies identified hydrogen sulfide (H2S) as an important signal in plant development and adaptation to environmental stress. H2S has been proven to participate in ethylene-induced stomatal closure, but how the signaling pathways of H2S and ethylene interact is still unclear. Here, we reveal how H2S controls the feedback-regulation of ethylene biosynthesis in tomato (Solanum lycopersicum) under osmotic stress. We found that ethylene induced the production of H2S in guard cells. The supply of hypotaurine (HT; a H2S scavenger) or DL-pro-pargylglycine (PAG; a synthetic inhibitor of H2S) removed the effect of ethylene or osmotic stress on stomatal closure. This suggests that ethylene-induced H2S is a downstream component of osmotic stress signaling, which is required for ethylene-induced stomatal closure under osmotic stress. We further found that H2S inhibited ethylene synthesis through inhibiting the activity of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidases (ACOs) by persulfidation. A modified biotin-switch method (MBST) showed that H2S can induce persulfidation of LeACO1 and LeACO2 in a dose-dependent manner, and that persulfidation inhibits the activity of LeACO1 and LeACO2. We also found that LeACO1 is persulfidated at cysteine 60. These data suggested that ethylene-induced H2S negatively regulates ethylene biosynthesis by persulfidation of LeACOs. In addition, H2S was also found to inhibit the expression of LeACO genes. The results provide insight on the general mode of action of H2S and contribute to a better understanding of a plant’s response to osmotic stress

    Accelerated discovery of molecular nanojunction photocatalysts for hydrogen evolution by using automated screening and flow synthesis

    Get PDF
    Discovering and optimizing multicomponent organic semiconductors is typically a laborious process. High-throughput experimentation can accelerate this, but the results of small-scale screening trials are not always transferable to bulk materials production. Here we report the accelerated discovery of molecular nanojunction photocatalysts based on a combinatorial donor–acceptor molecular library assisted by high-throughput automated screening. The knowledge gained from this high-throughput batch screening is then transferred to a scaled-up, flow-based synthesis process. The scaled-up molecular nanojunction MTPA-CA:CNP147 (3-(4-(bis(4-methoxyphenyl)amino)phenyl)-2-cyanoacrylic acid:2,6-bis(4-cyanophenyl)-4-(4′-fluoro-[1,1′-biphenyl]-4-yl)pyridine-3,5-dicarbonitrile) exhibits a sacrificial hydrogen evolution rate of 330.3 mmol h−1 g−1 with an external quantum efficiency of 80.3% at 350 nm, which are among the highest reported for an organic photocatalyst. A one-dimensional nanofibre architecture is identified for this molecular nanojunction, which exhibits efficient charge separation. Electronic structure–property correlations across the photocatalyst library show that a moderate binding energy between the donor and the acceptor molecules is a potential factor for efficient molecular nanojunction formation
    • …
    corecore