97 research outputs found

    MiR-455 targeting SOCS3 improve liver lipid disorders in diabetic mice

    Get PDF
    MiR-455 has been verified a key regulator of brown adipose tissue and adipose tissue-specific overexpression of miR-455 (ap2-miR-455) mice could combat high-fat-diet-induced obesity. This study is to verify overexpression of miR-455 could ameliorate the lipid accumulation and metabolism in the liver of db/db diabetic mice and explore the potential mechanisms. Diabetic mice (db/db) and control mice (db/m) were randomly divided into four groups. After overexpression of miR-455 in the liver of db/db mice, the triglycerides level in both serum and liver decreased, the lipid deposit in liver was improved, the expression of fatty acid synthase, stearoyl-CoA desaturase 1, sterol regulatory element binding protein 1c (SREBP-1c) and acetyl-CoA carboxylase (ACCα) was also significantly down-regulated. TargetScan indicated that suppressor of cytokine signalling 3 (SOCS3) is predicated to target miR-455 and the protein of SOCS3 in the liver of db/db mice after intervention was significantly decreased. The dual luciferase reporter assay showed that SOCS3 was target gene of miR-455. In vitro, in Palmitate (PA)-stimulated human normal liver (LO2) cells, transfected miR-455 mimic could significantly inhibit the expression of SOCS3, while transfected miR-455 inhibitor could up-regulate the expression of SOCS3. Transfecting LO2 cells with siRNA of SOCS3 could significantly down-regulate the protein expression of SREBP-1c and ACCα. Our study showed that overexpression of miR-455 in the liver could improve lipid metabolism in diabetic mice by down-regulating its target gene SOCS3

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Research on the ecological restoration method for highway debris slope: A case study of Guidu Highway in China

    No full text
    To clarify the superiority of slope ecological restoration technology in slope restoration, the artificial slope in the section of Guiyang-Duyun highway as the case study was analyzed in this paper. Plant sample collection experiments were carried out by sample method, and the evaluation indicators factors were plant distribution density, biomass and soil nutrients. The effect of slope restoration was evaluated by comparing with the ecological effect of traditional slope restoration measures. The results showed that for the slope ecological restoration sample, the average cumulative plant density was 187 plants per square meter, about 3.8 times of the comparison sample. The average biomass was 333.25g/m2 , which was about 6.4 times that of the comparison sample. Soil nutrients were also much higher than those in the comparison sample. The ecological restoration of the slope with ProGanics and Flexterra materials was superior to the traditional slope restoration measures. The oretical research results will have important theoretical and technical significance for the ecological restoration method for highway debris slope of Guidu highway

    Complete chloroplast genome of Lycoris sprengeri (Amaryllidaceae) and genetic comparison

    No full text
    Lycoris sprengeri is native to China and has various variations. It belongs to the Amaryllidaceae family, which contains abundant alkaloids for medical use and also was planted as garden bulbous flowers. In this study, we assembled the complete chloroplast (cp) genome of L. sprengeri by DNA sequencing, which will improve the complete cp genomic information for analysis of phylogenetic relationships and germplasm identification in Lycoris. The whole cp genome is 158,687 bp, which contained a large single-copy region (LSC) of 86,489 bp, a small single-copy region (SSC) of 18,540 bp, and a pair of inverted repeats (IRs) of 26,829 bp. A total of 137 genes were annotated, including 87 protein coding genes (PCGs), 42 tRNA, and 8 rRNA genes. Phylogenetic tree analysis revealed that the close relationship of three species of Lycoris (L. sprengeri, L. radiate, and L. squamigera) in the Amaryllidaceae family

    LLCF: A Load- and Location-Aware Collaborative Filtering Algorithm to Predict QoS of Web Service

    No full text

    Analytical solution and optimal design for the output performance of Galfenol cantilever energy harvester considering electromechanical coupling effect

    No full text
    Abstract The theoretical model of a Galfenol cantilever energy harvester is investigated for vibration energy harvesting. Compared with the numerical solution, the analytical solution can better capture the intrinsic effects of the physical parameters on the performance of the harvester. In this work, an electromechanical coupled distributed-parameter model of the Galfenol cantilever energy harvester is established based on Hamilton’s principle, linear constitutive equations of magnetostrictive material, and Faraday’s law of electromagnetic induction. The definitions and expressions of the electric damping and modified frequency are proposed due to the electromechanical coupling. The explicit analytical expressions of the average harvested power across the load resistance and tip vibration displacement of the Galfenol energy harvesting model are derived using the methods of Galliakin decomposition and electromechanical decoupling. The accuracy of the derived analytical results is verified by the experimental data and numerical solutions. The vibration response and energy harvesting performance of the Galfenol energy harvesting model are investigated by varying the excitation frequency, external resistance, and excitation acceleration amplitude. The analytical results show that, with the increase of the external load resistance and excitation frequency, the harvested power increases first and then decreases, indicating the existence of the optimal resistance and excitation frequency. From the explicit analytical expressions of the average harvested power, the optimal external load resistance or excitation frequency could be easily found to achieve the maximum harvested power for any fixed excitation frequency or external load resistance. The concept of proposing the electric damping and modified frequency for the Galfenol cantilever energy harvester simplifies the solution process for the output performances benefiting from the exact relationship between the output performances and the electromechanical coupling parameter derived in this work

    The Influence of Residual Coagulant Al on the Biofilm EPS and Membrane Fouling Potential in Wastewater Reclamation

    No full text
    Biofouling is inevitable in wastewater reclamation when using membrane technology. In particular, the extracellular polymeric substances (EPS) from biofilm is a major contributor to biofouling. Coagulation is critical in the process of reusing wastewater before membrane treatment, and residual coagulants (e.g., Al salts) are able to alter the characteristics of the biofilm EPS. However, the distribution of residual Al across varying biofilm EPS fractions and its effect on the membrane fouling potential resulting from biofilm EPS remains unclear. We found that 34% of the residual Al was present in the soluble EPS (S-EPS), 26% in the loosely bound EPS (LB-EPS) and 40% in the tightly bound EPS (TB-EPS). Moreover, compared with the control groups, the residual Al in biofilm induced more biofilm formation and more EPS formation. Al reduced the zeta potential and increased the hydrophobicity of the EPS. These changes induced a significant rise in the membrane fouling potential of S-EPS and LB-EPS. This work provides coagulation support for wastewater reclamation using membrane technology
    corecore