67 research outputs found

    Interleukin-17A Contributes to Myocardial Ischemia/Reperfusion Injury by Regulating Cardiomyocyte Apoptosis and Neutrophil Infiltration

    Get PDF
    ObjectivesThis study tested whether interleukin (IL)-17A is involved in the pathogenesis of mouse myocardial ischemia/reperfusion (I/R) injury and investigated the mechanisms.BackgroundInflammatory processes play a major role in myocardial I/R injury. We recently identified IL-17A as an important cytokine in inflammatory cardiovascular diseases such as atherosclerosis and viral myocarditis. However, its role in myocardial I/R injury remains unknown.MethodsThe involvement of IL-17A was assessed in functional assays in mouse myocardial I/R injury by neutralization/repletion or genetic deficiency of IL-17A, and its mechanism on cardiomyocyte apoptosis and neutrophil infiltration were further studied in vivo and in vitro.ResultsInterleukin-17A was elevated after murine left coronary artery ligation and reperfusion. Intracellular cytokine staining revealed that γδT lymphocytes but not CD4+ helper T cells were a major source of IL-17A. Anti–IL-17A monoclonal antibody treatment or IL-17A knockout markedly ameliorated I/R injury, as demonstrated by reduced infarct size, reduced cardiac troponin T levels, and improved cardiac function. This improvement was associated with a reduction in cardiomyocyte apoptosis and neutrophil infiltration. In contrast, repletion of exogenous IL-17A induced the opposite effect. In vitro study showed that IL-17A mediated cardiomyocyte apoptosis through regulating the Bax/Bcl-2 ratio, induced CXC chemokine-mediated neutrophil migration and promoted neutrophil-endothelial cell adherence through induction of endothelial cell E-selectin and inter-cellular adhesion molecule-1 expression.ConclusionsIL-17A mainly produced by γδT cells plays a pathogenic role in myocardial I/R injury by inducing cardiomyocyte apoptosis and neutrophil infiltration

    Edge states in a two-dimensional honeycomb lattice of massive magnetic skyrmions

    Get PDF
    We study the collective dynamics of a two-dimensional honeycomb lattice of magnetic skyrmions. By performing large-scale micromagnetic simulations, we find multiple chiral and non-chiral edge modes of skyrmion oscillations in the lattice. The non-chiral edge states are due to the Tamm-Shockley mechanism, while the chiral ones are topologically protected against structure defects and hold different handednesses depending on the mode frequency. To interpret the emerging multiband nature of the chiral edge states, we generalize the massless Thiele's equation by including a second-order inertial term of skyrmion mass as well as a third-order non-Newtonian gyroscopic term, which allows us to model the band structure of skrymion oscillations. Theoretical results compare well with numerical simulations. Our findings uncover the importance of high order effects in strongly coupled skyrmions and are helpful for designing novel topological devices.Comment: 6 pages,4 figures,accepted by Physical Review B as a Rapid Communicatio

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Fast Measurement of Brillouin Frequency Shift in Optical Fiber Based on a Novel Feedforward Neural Network

    No full text
    Brillouin scattering-based distributed optical fiber sensors have been successfully employed in various applications in recent decades, because of benefits such as small size, light weight, electromagnetic immunity, and continuous monitoring of temperature and strain. However, the data processing requirements for the Brillouin Gain Spectrum (BGS) restrict further improvement of monitoring performance and limit the application of real-time measurements. Studies using Feedforward Neural Network (FNN) to measure Brillouin Frequency Shift (BFS) have been performed in recent years to validate the possibility of improving measurement performance. In this work, a novel FNN that is 3 times faster than previous FNNs is proposed to improve BFS measurement performance. More specifically, after the original Brillouin Gain Spectrum (BGS) is preprocessed by Principal Component Analysis (PCA), the data are fed into the Feedforward Neural Network (FNN) to predict BFS

    Nonlinear Dynamic Feature Extraction Based on Phase Space Reconstruction for the Classification of Speech and Emotion

    No full text
    Due to the shortcomings of linear feature parameters in speech signals, and the limitations of existing time- and frequency-domain attribute features in characterizing the integrity of the speech information, in this paper, we propose a nonlinear method for feature extraction based on the phase space reconstruction (PSR) theory. First, the speech signal was analyzed using a nonlinear dynamic model. Then, the model was used to reconstruct a one-dimensional time speech signal. Finally, nonlinear dynamic (NLD) features based on the reconstruction of the phase space were extracted as the new characteristic parameters. Then, the performance of NLD features was verified by comparing their recognition rates with those of other features (NLD features, prosodic features, and MFCC features). Finally, the Korean isolated words database, the Berlin emotional speech database, and the CASIA emotional speech database were chosen for validation. The effectiveness of the NLD features was tested using the Support Vector Machine classifier. The results show that NLD features not only have high recognition rate and excellent antinoise performance for speech recognition tasks but also can fully characterize the different emotions contained in speech signals

    MOFs with 2,6-naphthalene dicarboxylic acid as organic ligand for solid phase microextraction of aldehyde biomarkers in the exhalation of lung cancer patients

    No full text
    In this work, four metal-organic frameworks (MOFs) including DUT-4, DUT-8, IRMOF-8, and MIL-140B were synthesized using 2,6-naphthalene dicarboxylic acid as organic ligand and Al3+, Co2+, Zn2+, and Zr4+as metal centers, then coated on stainless steel wires as solid-phase microextraction (SPME) fiber coatings. Five aldehyde biomarkers (hexanal, heptanal, octanal, decanal, and nonanal) in exhaled breath of lung cancer patients were used as the target analytes, and extracted using four MOFs fiber coatings, followed by thermal desorption and quantitative analysis using GC–MS. The DUT-4 was found to be the most appropriate sorbent. The developed SPME-GC–MS method has large enrichment factors (877–1711), wide linear ranges (0.5–1000 μg L−1), and low detection limits (0.056–0.138 μg L−1). The relative standard deviation for six replicate cycles using one DUT-4 coated fiber were 2.0–7.7 % (intra-day) and 2.2–4.6 % (inter-day), respectively. The fiber-to-fiber reproducibility for three parallel prepared fibers was in the range of 3.7–13.7 % (RSD). The fabricated DUT-4 coated fiber can withstand at least 100 cycles of extraction/desorption/conditioning without significant loss of extraction efficiency and precision. The high enrichment factors of the DUT-4 coatings are attributed to the high specific surface area, unique porous structure, and abundant aluminum coordinated unsaturated metal sites of the DUT-4 material. Moreover, the 2,6-naphthalene dicarboxylic acid has two benzene rings with a 180° orientation, which not only increases the hydrophobicity of the MOFs material to avoid water molecules occupying adsorption sites and helps to form a rigid skeleton structure with a large number of functional adsorption sites on the surface, thereby improving the enrichment factor of target analytes. Ultimately, the developed DUT-4 coated SPME fibers was sucessfully used for the analysis of exhaled breath samples, and the recoveries for the spiked analytes were in the range of 89–105 %
    corecore