3,689 research outputs found

    Computing resource allocation in three-tier IoT fog networks: a joint optimization approach combining Stackelberg game and matching

    Get PDF
    Fog computing is a promising architecture to provide economical and low latency data services for future Internet of Things (IoT)-based network systems. Fog computing relies on a set of low-power fog nodes (FNs) that are located close to the end users to offload the services originally targeting at cloud data centers. In this paper, we consider a specific fog computing network consisting of a set of data service operators (DSOs) each of which controls a set of FNs to provide the required data service to a set of data service subscribers (DSSs). How to allocate the limited computing resources of FNs to all the DSSs to achieve an optimal and stable performance is an important problem. Therefore, we propose a joint optimization framework for all FNs, DSOs, and DSSs to achieve the optimal resource allocation schemes in a distributed fashion. In the framework, we first formulate a Stackelberg game to analyze the pricing problem for the DSOs as well as the resource allocation problem for the DSSs. Under the scenarios that the DSOs can know the expected amount of resource purchased by the DSSs, a many-to-many matching game is applied to investigate the pairing problem between DSOs and FNs. Finally, within the same DSO, we apply another layer of many-to-many matching between each of the paired FNs and serving DSSs to solve the FN-DSS pairing problem. Simulation results show that our proposed framework can significantly improve the performance of the IoT-based network systems

    Cavity QED treatment of scattering-induced efficient free-space excitation and collection in high-Q whispering-gallery microcavities

    Full text link
    Whispering-gallery microcavity laser possesses ultralow threshold, whereas convenient free-space optical excitation and collection suffer from low efficiencies due to its rotational symmetry. Here we analytically study a three-dimensional microsphere coupled to a nano-sized scatterer in the framework of quantum optics. It is found that the scatterer is capable of coupling light in and out of the whispering-gallery modes (WGMs) without seriously degrading their high-Q properties, while the microsphere itself plays the role of a lens to focus the input beam on the scatterer and vice versa. Our analytical results show that (1) the high-Q WGMs can be excited in free space, and (2) over 50% of the microcavity laser emission can be collected within less than 1{1}^{\circ}. This coupling system holds great potential for low threshold microlasers free of external couplers.Comment: 10 pages, 8 figure

    Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator

    Full text link
    We propose a hybrid photonic-plasmonic resonant structure which consists of a metal nanoparticle (MNP) and a whispering gallery mode (WGM) microcavity. It is found that the hybrid mode enables a strong interaction between the light and matter, and the single-atom cooperativity is enhanced by more than two orders of magnitude compared to that in a bare WGM microcavity. This remarkable improvement originates from two aspects: (1) the MNP offers a highly enhanced local field in the vicinity of an emitter, and (2), surprisingly, the high-\textit{Q} property of WGMs can be maintained in the presence of the MNP. Thus the present system has great advantages over a single microcavity or a single MNP, and holds great potential in quantum optics, nonlinear optics and highly sensitive biosening.Comment: 5 pages, 4 figure

    Ecmo-assisted carinal resection and reconstruction after left pneumonectomy

    Get PDF
    Extracorporeal Membrane Oxygenation (ECMO) has become an increasingly important technique for patients with respiratory or cardiac failure for a variety of causes. In addition, there are many reports about the use of ECMO in surgical operation on neonates and children patients with tracheal obstruction. In this report we present a case about an adult patient who underwent a carinal resection and reconstruction after left pneumonectomy with ECMO assistance successfully. To our knowledge, this case is the first of its kind to use ECMO in adult carinal resection and reconstruction after pneumonectomy. In this report, we try to illustrate that ECMO is effective in operations of this kind

    Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization

    Get PDF
    Scope: Obesity is closely related to the imbalance of white adipose tissue storing excess calories, and brown adipose tissue dissipating energy to produce heat in mammals. Recent studies revealed that acquisition of brown characteristics by white adipocytes, termed “browning,” may positively contribute to cellular bioenergetics and metabolism homeostasis. The goal was to investigate the putative effects of natural antioxidant sulforaphane (1-isothiocyanate-4-methyl-sulfonyl butane; SFN) on browning of white adipocytes. Methods and Results: 3T3-L1 mature white adipocytes were treated with SFN for 48 h, and then the mitochondrial content, function, and energy utilization were assessed. SFN was found to induce 3T3-L1 adipocytes browning based on the increased mitochondrial content and activity of respiratory chain enzymes, whereas the mechanism involved the upregulation of nuclear factor E2-related factor 2/ sirtuin1/ peroxisome proliferator-activated receptor gamma coactivator 1 alpha signaling. SFN enhanced uncoupling protein 1 expression, a marker for brown adipocyte, leading to the decrease in cellular ATP. SFN also enhanced glucose uptake and oxidative utilization, lipolysis and fatty acid oxidation in 3T3-L1 adipocytes. Conclusion: SFN-induced browning of white adipocytes enhanced the utilization of cellular fuel, and the application of SFN is a promising strategy to combat obesity and obesity-related metabolic disorder

    Silicon (Si) biochar for the mitigation of arsenic (As) bioaccumulation in spinach (Spinacia oleracean) and improvement in the plant growth

    Get PDF
    In many parts of the world, growing crops on polluted soils often leads to elevated levels of pollutants in plant tissues. Minimizing the transfer of these pollutants into edible plant tissues while improving plant growth and productivity is a major area of research. In this study, we investigated the efficiency of silicon-modified biochar in reducing the uptake of As(III) in spinach (Spinacia oleracean) while simultaneously increasing the plant biomass. Unmodified biochars (uBC) and silicon-modified biochars (SiBC) were prepared from bamboo at 300 and 600 °C and characterized by Scanning Electron Microscopy with Energy Dispersive X-ray (SEM EDX), Fourier Transform Infrared Spectrometry (FTIR), X-ray Photoelectron Spectrometry (XPS), and X-ray Diffraction analysis (XRD). The bioaccumulation of As(III) in the edible part of spinach significantly decreased by 33.8 and 37.7% following the amendment of, respectively, 2% and 5% SiBC in soil. Biochar amendment increased the concentration of As(III) in pore water by 64.4% as a result of increased soil pH from 6.83 ± 0.4 to 8.01 ± 0.1 and dissolved organic carbon (DOC) from 7.02 ± 3.7 to 22.58 ± 3.7 g kg−1. However, the uptake of As(III) into spinach was prevented by silicon, which was preferentially transported to the plant through the same transport pathway as As(III). Dry biomass yield in spinach also significantly increased by 67.7% and strongly correlated (R2 = 0.97) with CaCl2 extractable Si in the plant. The results highlighted the effectiveness of SiBC in reducing the toxic effects of As in the environment and overall dietary exposure to the pollutant. The slow release of Si from biochars (<48.42%) compared to soil (87.39%) also suggested that SiBC can be efficient sources of Si fertilization for annual crops which can significantly reduce the increasing demand for Si fertilizers and their sustainable use in the environment

    Silicon (Si) biochar for the mitigation of arsenic (As) bioaccumulation in spinach (Spinacia oleracean) and improvement in the plant growth

    Get PDF
    In many parts of the world, growing crops on polluted soils often leads to elevated levels of pollutants in plant tissues. Minimizing the transfer of these pollutants into edible plant tissues while improving plant growth and productivity is a major area of research. In this study, we investigated the efficiency of silicon-modified biochar in reducing the uptake of As(III) in spinach (Spinacia oleracean) while simultaneously increasing the plant biomass. Unmodified biochars (uBC) and silicon-modified biochars (SiBC) were prepared from bamboo at 300 and 600 °C and characterized by Scanning Electron Microscopy with Energy Dispersive X-ray (SEM EDX), Fourier Transform Infrared Spectrometry (FTIR), X-ray Photoelectron Spectrometry (XPS), and X-ray Diffraction analysis (XRD). The bioaccumulation of As(III) in the edible part of spinach significantly decreased by 33.8 and 37.7% following the amendment of, respectively, 2% and 5% SiBC in soil. Biochar amendment increased the concentration of As(III) in pore water by 64.4% as a result of increased soil pH from 6.83 ± 0.4 to 8.01 ± 0.1 and dissolved organic carbon (DOC) from 7.02 ± 3.7 to 22.58 ± 3.7 g kg−1. However, the uptake of As(III) into spinach was prevented by silicon, which was preferentially transported to the plant through the same transport pathway as As(III). Dry biomass yield in spinach also significantly increased by 67.7% and strongly correlated (R2 = 0.97) with CaCl2 extractable Si in the plant. The results highlighted the effectiveness of SiBC in reducing the toxic effects of As in the environment and overall dietary exposure to the pollutant. The slow release of Si from biochars (<48.42%) compared to soil (87.39%) also suggested that SiBC can be efficient sources of Si fertilization for annual crops which can significantly reduce the increasing demand for Si fertilizers and their sustainable use in the environment

    Synthesis and Structure-Activity Relationships of Pyridoxal-6-arylazo-5'-phosphate and Phosphonate Derivatives as P2 Receptor Antagonists.

    Get PDF
    Novel analogs of the P2 receptor antagonist pyridoxal-5'-phosphate-6-phenylazo-2',4'-disulfonate (PPADS) were synthesized. Modifications were made through functional group substitution on the sulfophenyl ring and at the phosphate moiety through the inclusion of phosphonates, demonstrating that a phosphate linkage is not required for P2 receptor antagonism. Substituted 6-phenylazo and 6-naphthylazo derivatives were also evaluated. Among the 6-phenylazo derivatives, 5'-methyl, ethyl, propyl, vinyl, and allyl phosphonates were included. The compounds were tested as antagonists at turkey erythrocyte and guinea-pig taenia coli P2Y(1) receptors, in guinea-pig vas deferens and bladder P2X(1) receptors, and in ion flux experiments by using recombinant rat P2X(2) receptors expressed in Xenopus oocytes. Competitive binding assay at human P2X(1) receptors in differentiated HL-60 cell membranes was carried out by using [(35)S]ATP-?-S. A 2'-chloro-5'-sulfo analog of PPADS (C(14)H(12)O(9)N(3)ClPSNa), a vinyl phosphonate derivative (C(15)H(12)O(11)N(3)PS(2)Na(3)), and a naphthylazo derivative (C(18)H(14)O(12)N(3)PS(2)Na(2)), were particularly potent in binding to human P2X(1) receptors. The potencies of phosphate derivatives at P2Y(1) receptors were generally similar to PPADS itself, except for the p-carboxyphenylazo phosphate derivative C(15)H(13)O(8)N(3)PNa and its m-chloro analog C(15)H(12)O(8)N(3)ClPNa, which were selective for P2X vs. P2Y(1) receptors. C(15)H(12)O(8)N(3)ClPNa was very potent at rat P2X(2) receptors with an IC(50) value of 0.82 ?M. Among the phosphonate derivatives, [4-formyl-3-hydroxy-2-methyl-6-(2-chloro-5-sulfonylphenylazo)-pyrid-5-yl]methylphosphonic acid (C(14)H(12)-O(8)N(3)ClPSNa) showed high potency at P2Y(1) receptors with an IC(50) of 7.23 ?M. The corresponding 2,5-disulfonylphenyl derivative was nearly inactive at turkey erythrocyte P2Y(1) receptors, whereas at recombinant P2X(2) receptors had an IC(50) value of 1.1 ?M. An ethyl phosphonate derivative (C(15)H(15)O(11)N(3)PS(2)Na(3)), whereas inactive at turkey erythrocyte P2Y(1) receptors, was particularly potent at recombinant P2X(2) receptors

    Universal phonon softening in the pseudogap state of Tl2_2Ba2_2Can1_{n-1}Cun_nO2n+4+δ_{2n+4+\delta}

    Full text link
    Exploring the origin of the pseudogap is important for the understanding of superconductivity in cuprates. Here we report a systematical experimental study on the phonon vibrational properties of Tl2_2Ba2_2Can1_{n-1}Cun_nO2n+4+δ_{2n+4+\delta} (nn=1,2,3) single crystals based on the Raman scattering measurements over the temperature range from 10 to 300 K. The temperature evolution of the frequency and linewidth of the observed phonon modes in each member of this family does not follow the expected self-energy effect when entering the superconducting state. Instead, these phonon modes exhibit a universal softening behavior below the temperature around 150 K, which is higher above the superconducting transition. From the comparison with the existing experimental data for various orders, we find that the observed starting temperature for the phonon softening corresponds to the onset opening temperature of the pseudogap. This finding indicates a large lattice effect in the pseudogap state and the non-negligible spin-phonon coupling for such a phonon softening.Comment: 12 pages, 6 figure
    corecore