395 research outputs found

    Upregulation of microRNA-125b contributes to leukemogenesis and increases drug resistance in pediatric acute promyelocytic leukemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although current chemotherapy regimens have remarkably improved the cure rate of pediatric acute promyelocytic leukemia (APL) over the past decade, more than 20% of patients still die of the disease, and the 5-year cumulative incidence of relapse is 17%. The precise gene pathways that exert critical control over the determination of cell lineage fate during the development of pediatric APL remain unclear.</p> <p>Methods</p> <p>In this study, we analyzed <it>miR-125b </it>expression in 169 pediatric acute myelogenous leukemia (AML) samples including 76 APL samples before therapy and 38 APL samples after therapy. The effects of enforced expression of <it>miR-125b </it>were evaluated in leukemic cell and drug-resistant cell lines.</p> <p>Results</p> <p><it>miR-125b </it>is highly expressed in pediatric APL compared with other subtypes of AML and is correlated with treatment response, as well as relapse of pediatric APL. Our results further demonstrated that <it>miR-125b </it>could promote leukemic cell proliferation and inhibit cell apoptosis by regulating the expression of tumor suppressor BCL2-antagonist/killer 1 (Bak1). Remarkably, <it>miR-125b </it>was also found to be up-regulated in leukemic drug-resistant cells, and transfection of a <it>miR-125b </it>duplex into AML cells can increase their resistance to therapeutic drugs,</p> <p>Conclusions</p> <p>These findings strongly indicate that <it>miR-125b </it>plays an important role in the development of pediatric APL at least partially mediated by repressing BAK1 protein expression and could be a potential therapeutic target for treating pediatric APL failure.</p

    Case Report: Giant left atrial cystic tumor: myxoma or intracardiac blood cyst?

    Get PDF
    BackgroundPrimary cardiac tumors are uncommon, with the majority being benign myxomas. Cystic myxoma, a particularly rare type of benign cardiac tumor, demands cautious differential diagnosis from other cardiac tumors.Case summaryA 43-year-old male patient presenting with intermittent dyspnea was referred to our department for surgical evaluation. Transthoracic echocardiography (TTE) and transesophageal echocardiography (TEE) unveiled an intra-left atrial cyst, which was subsequently found to be blood-filled during a video-assisted microinvasive heart surgery. Pathological examination depicted a cyst wall filled with small stellate and fat spindle cells, along with a mucoid matrix, indicating a diagnosis of cystic myxoma.ConclusionsWe herein presented a rare case of an adult patient with cystic myxoma, initially misdiagnosed as an intracardiac blood cyst (CBC) prior to surgery, and ultimately verified via pathological findings

    Gelatinase-stimuli strategy enhances the tumor delivery and therapeutic efficacy of docetaxel-loaded poly(ethylene glycol)-poly(ɛ-caprolactone) nanoparticles

    Get PDF
    Nanoscale drug carriers have been extensively developed to improve drug therapeutic efficiency. However, delivery of chemotherapeutic agents to tumor tissues and cells has not been favorably managed. In this study, we developed a novel “intelligent” nanoparticle, consisting of a gelatinase-cleavage peptide with poly(ethylene glycol) (PEG) and poly(ɛ-caprolactone) (PCL)-based structure for tumor-targeted docetaxel delivery (DOC-TNPs). The docetaxel-loaded PEG-PCL nanoparticles (DOC-NPs) that did not display gelatinase-stimuli behaviors were used as a control. We found clear evidence that the DOC-TNPs were transformed by gelatinases, allowing drug release and enhancing the cellular uptake of DOC (P < 0.01). In vivo biodistribution study demonstrated that targeted DOC-TNPs could accumulate and remain in the tumor regions, whereas non-targeted DOC-NPs rapidly eliminated from the tumor tissues. DOC-TNPs exhibited higher tumor growth suppression than commercialized Taxotere® (docetaxel; Jiangsu Hengrui Medicine Company, Jiangsu, China) and DOC-NPs on hepatic H22 tumor model via intravenous administration (P < 0.01). Both in vitro and in vivo experiments suggest that the gelatinase-mediated nanoscale delivery system is promising for improvement of antitumor efficacy in various overexpressed gelatinase cancers

    Genome-Wide and Differential Proteomic Analysis of Hepatitis B Virus and Aflatoxin B1 Related Hepatocellular Carcinoma in Guangxi, China

    Get PDF
    Both hepatitis B virus (HBV) and aflatoxin B1 (AFB1) exposure can cause liver damage as well as increase the probability of hepatocellular carcinoma (HCC). To investigate the underlying genetic changes that may influence development of HCC associated with HBV infection and AFB1 exposure, HCC patients were subdivided into 4 groups depending upon HBV and AFB1 exposure status: (HBV(+)/AFB1(+), HBV(+)/AFB1(-), HBV(-)/AFB1(+), HBV(-)/AFB1(-)). Genetic abnormalities and protein expression profiles were analyzed by array-based comparative genomic hybridization and isobaric tagging for quantitation. A total of 573 chromosomal aberrations (CNAs) including 184 increased and 389 decreased were detected in our study population. Twenty-five recurrently altered regions (RARs; chromosomal alterations observed in ≥10 patients) in chromosomes were identified. Loss of 4q13.3-q35.2, 13q12.1-q21.2 and gain of 7q11.2-q35 were observed with a higher frequency in the HBV(+)/AFB1(+), HBV(+)/AFB1(-) and HBV(-)/AFB1(+) groups compared to the HBV(-)/AFB(-) group. Loss of 8p12-p23.2 was associated with high TNM stage tumors (P = 0.038) and was an unfavorable prognostic factor for tumor-free survival (P=0.045). A total of 133 differentially expressed proteins were identified in iTRAQ proteomics analysis, 69 (51.8%) of which mapped within identified RARs. The most common biological processes affected by HBV and AFB1 status in HCC tumorigenesis were detoxification and drug metabolism pathways, antigen processing and anti-apoptosis pathways. Expression of AKR1B10 was increased significantly in the HBV(+)/AFB1(+) and HBV(-)/AFB1(+) groups. A significant correlation between the expression of AKR1B10 mRNA and protein levels as well as AKR1B10 copy number was observed, which suggest that AKR1B10 may play a role in AFB1-related hepatocarcinogenesis. In summary, a number of genetic and gene expression alterations were found to be associated with HBV and AFB1- related HCC. The possible synergistic effects of HBV and AFB1 in hepatocarcinogenesis warrant further investigations

    Synergy between Proteasome Inhibitors and Imatinib Mesylate in Chronic Myeloid Leukemia

    Get PDF
    Resistance developed by leukemic cells, unsatisfactory efficacy on patients with chronic myeloid leukemia (CML) at accelerated and blastic phases, and potential cardiotoxity, have been limitations for imatinib mesylate (IM) in treating CML. Whether low dose IM in combination with agents of distinct but related mechanisms could be one of the strategies to overcome these concerns warrants careful investigation.We tested the therapeutic efficacies as well as adverse effects of low dose IM in combination with proteasome inhibitor, Bortezomib (BOR) or proteasome inhibitor I (PSI), in two CML murine models, and investigated possible mechanisms of action on CML cells. Our results demonstrated that low dose IM in combination with BOR exerted satisfactory efficacy in prolongation of life span and inhibition of tumor growth in mice, and did not cause cardiotoxicity or body weight loss. Consistently, BOR and PSI enhanced IM-induced inhibition of long-term clonogenic activity and short-term cell growth of CML stem/progenitor cells, and potentiated IM-caused inhibition of proliferation and induction of apoptosis of BCR-ABL+ cells. IM/BOR and IM/PSI inhibited Bcl-2, increased cytoplasmic cytochrome C, and activated caspases. While exerting suppressive effects on BCR-ABL, E2F1, and β-catenin, IM/BOR and IM/PSI inhibited proteasomal degradation of protein phosphatase 2A (PP2A), leading to a re-activation of this important negative regulator of BCR-ABL. In addition, both combination therapties inhibited Bruton's tyrosine kinase via suppression of NFκB.These data suggest that combined use of tyrosine kinase inhibitor and proteasome inhibitor might be helpful for optimizing CML treatment

    Adsorption Behavior of CO at the Ultrathin Rh and Pt Film Electrodes

    Get PDF
    利用沉积在粗糙金电极上的过渡金属超薄层电极技术 ,我们获得了氢及一氧化碳在Rh和Pt表面上吸附的拉曼信号 ,并对两者之间的相互作用进行了分析 ..我们还进行了二氧化碳在这两种金属表面的还原行为的初步研究 ,以及对不同方式获得的一氧化碳吸附拉曼信号的特点进行了分析 .Pt group metals have been widely used in catalysis such as hydrogenation of organic compounds and the oxidation of carbon monoxide. The information about CO adsorption on the Pt group surfaces and the influence of other surface species, such as hydrogen and CO 2, will be greatly helpful to elucidate the adsorption behavior of CO on Pt group metal surfaces and get a deeper understanding of catalytic mechanisms of Pt group metals. Surface enhanced Raman spectroscopy (SERS) has been becoming an increasingly important means to characterize the electrochemical metal solution interface over the past two decades. Our laboratory has successfully obtained SERS from neat transition metal surfaces, including Pt [1] , Ni [2] , Fe [3] and Co. We are able to observe the SERS of CO and the atop adsorbed H on roughened Pt surfaces [1] . However, compared with Ag, Au and Cu which exhibit great surface enhancement, the weak enhancement of the transition metals make it unsuitable for the detailed study for those adsorbates with very small Raman scattering cross sections. Another method to obtain the SERS signals from Pt group metals has been developed in Weaver's group, which is to electrodeposit ultrathin metal films on SERS active Au surfaces, utilizing the long range effect of the SERS of Au [4,5] .. Recently, they obtained the pinhole free ultrathin (2~5 monolayers, mL) films of Pt group metals over SERS active gold, which can produce intense SERS for chemisorbates bound to the overlayer metal. [6] The important advantage of the improved method is that it can avoid the influence from the SERS active substrate. Further more, the surface enhancement of these metal thin films is higher than that of roughened pure Pt group metals (about 10 to 100 times). Therefore, by using this method, it is possible to obtain good quality Raman signals that enable more detailed information of species with small Raman cross sections to be obtained.作者联系地址:固体表面物理化学国家重点实验室厦门大学化学系!福建厦门361005,固体表面物理化学国家重点实验室厦门大学化学系!福建厦门361005,固体表面物理化学国家重点实验室厦门大学化学系!福建厦门361005,固体表面物理化学国家重点实验室厦门大学化学系!福建厦门361005Author's Address: State Key Lab. for Phys. Chem. of Solid Surfaces, Dept. of Chem., Xiamen Univ.,Xiamen 361005, Chin

    Identification of susceptibility genes in non-syndromic cleft lip with or without cleft palate using whole-exome sequencing

    Get PDF
    Background: Non-syndromic cleft lip with or without cleft palate (NSCL/P) is among the most common congenital malformations. The etiology of NSCL/P remains poorly characterized owing to its complex genetic heterogeneity. The objective of this study was to identify genetic variants that increase susceptibility to NSCL/P. Material and Methods: Whole-exome sequencing (WES) was performed in 8 fetuses with NSCL/P in China. Bioinformatics analysis was performed using commercially available software. Variants detected by WES were validated by Sanger sequencing. Results: By filtering out synonymous variants in exons, we identified average 8575 nonsynonymous single nucleotide variants (SNVs). We subsequently compared the SNVs against public databases including NCBI dbSNP build 135 and 1000 Genomes Project and obtained an average of 203 SNVs. Total 12 reported candidate genes were verified by Sanger sequencing. Sanger sequencing also confirmed 16 novel SNVs shared by two or more samples. Conclusions: We have found and confirmed 16 susceptibility genes responsible for NSCL/P, which may play important role in the etiology of NSCL/P. The susceptibility genes identified in this study will not only be useful in revealing the etiology of NSCL/P but also in diagnosis and treatment of the patients with NSCL/P

    Cloning of a Novel Protein Interacting with BRS-3 and Its Effects in Wound Repair of Bronchial Epithelial Cells

    Get PDF
    Bombesin receptor subtype 3 (BRS-3), the orphan bombesin receptor, may play a role in the regulation of stress responses in lung and airway epithelia. Bombesin receptor activated protein (BRAP )is a novel protein we found in our previous study which interacts with BRS-3. This study was designed to observe the subcellular location and wound repair function of BRAP in human bronchial epithelial cells (HBECs). BRAP ORF was amplified by RT-PCR and ligated to pEGFP-C1 vector, and then the recombinant plasmid pEGFP-C1-BRAP was transfected into Hela cells. The location of BRAP protein was observed by laser confocal microscope, and the expression of it was analyzed by Western-blot. At the same time,we built the recombinant plasmid pcDNA3.1(+)-BRAP, transfected it into HBECs and observed its impact on cell cycle and wound repair of HBECs. The results showed that BRAP locates in membrane and cytoplasm and increases significantly in transfected cells. Flow cytometry results demonstrated that the recombinant plasmid increases S phase plus G2 phase of cell cycle by 25%. Microscopic video analysis system showed that the repair index of wounded HBECs increases by 20% through stable expression of BRAP. The present study demonstrated that BRAP locates in the membrane and cytoplasm, suggesting that this protein is a cytoplasm protein, which promotes cell cycle and wound repair of HBECs

    Identification of Transcription Factors Regulating CTNNAL1 Expression in Human Bronchial Epithelial Cells

    Get PDF
    Adhesion molecules play important roles in airway hyperresponsiveness or airway inflammation. Our previous study indicated catenin alpha-like 1 (CTNNAL1), an alpha-catenin-related protein, was downregulated in asthma patients and animal model. In this study, we observed that the expression of CTNNAL1 was increased in lung tissue of the ozone-stressed Balb/c mice model and in acute ozone stressed human bronchial epithelial cells (HBEC). In order to identify the possible DNA-binding proteins regulating the transcription of CTNNAL1 gene in HBEC, we designed 8 oligo- nucleotide probes corresponding to various regions of the CTNNAL1 promoter in electrophoretic mobility shift assays (EMSA). We detected 5 putative transcription factors binding sites within CTNNAL1 promoter region that can recruit LEF-1, AP-2α and CREB respectively by EMSA and antibody supershift assay. Chromatin immunoprecipitation (ChIP) assay verified that AP-2 α and LEF-1 could be recruited to the CTNNAL1 promoter. Therefore we further analyzed the functions of putative AP-2 and LEF-1 sites within CTNNAL1 promoter by site-directed mutagenesis of those sites within pGL3/FR/luc. We observed a reduction in human CTNNAL1 promoter activity of mutants of both AP-2α and LEF-1 sites. Pre-treatment with ASOs targeting LEF-1and AP-2α yielded significant reduction of ozone-stress-induced CTNNAL1 expression. The activation of AP-2α and LEF-1, followed by CTNNAL1 expression, showed a correlation during a 16-hour time course. Our data suggest that a robust transcriptional CTNNAL1 up-regulation occurs during acute ozone-induced stress and is mediated at least in part by ozone-induced recruitments of LEF-1 and AP-2α to the human CTNNAL1 promoter
    corecore