46 research outputs found

    The simulation analysis of contact characteristics of biomimetic flexible surfaces

    Get PDF
    Based on the foot structure of the climbing biology and multivariate coupling bionic technology, the bionic flexible convex surface was designed and a 3D model was created using the digital modeling software. Finite Element Analysis software was used for contacting analysis to the bionic flexible convex foot structure in the state of dry friction and wet adhesion, and then studied frictional contact performance. The results of Finite Element Analysis shows that the contact stress of the convex is much larger than the stress of the area around it in the dry friction state and the deformation is mainly concentrated in the convex’s top. The friction between the hemispherical convex surface and the contact surface is the maximum and the cylindrical convex surface is the minimum. The friction between the bionic flexible convex structure and the solid contact surface in wet adhesion state is larger than dry state.Keywords: Bionic, flexible, contact, finite element, wet adhesio

    Determining the Biodegradability of Leachate Through XAD-8 Adsorption

    Get PDF
    AbstractKnowledge of biodegradability of leachate during municipal solid waste disposal is important for this process. The traditional indicator BOD5/COD can characterize the leachate stability, but the experiment of BOD5 lasts long time and success or failure is often affected by various factors, such as the seed, solution times, dilution multiple, and high levels of nitrate and nitrite. The present study was built up an innovative method with short time to determine the biodegradability of leachate by using XAD-8 resin. The leachate was sampled from the aerobic, semi-aerobic, and anaerobic degradations of municipal solid waste. The degradability of leachate could be determined using the formula given by 1-2.084CODXAD/COD. When the CODXAD/COD ratio is greater than 0.432, the leachate is expected to be stable

    Using pre-clinical studies to explore the potential clinical uses of exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells

    Get PDF
    Recent studies of exosomes derived from mesenchymal stem cells (MSCs) have indicated high potential clinical applications in many diseases. However, the limited source of MSCs impedes their clinical research and application. Most recently, induced pluripotent stem cells (iPSCs) have become a promising source of MSCs. Exosome therapy based on iPSC-derived MSCs (iMSCs) is a novel technique with much of its therapeutic potential untapped. Compared to MSCs, iMSCs have proved superior in cell proliferation, immunomodulation, generation of exosomes capable of controlling the microenvironment, and bioactive paracrine factor secretion, while also theoretically eliminating the dependence on immunosuppression drugs. The therapeutic effects of iMSC-derived exosomes are explored in many diseases and are best studied in wound healing, cardiovascular disease, and musculoskeletal pathology. It is pertinent clinicians have a strong understanding of stem cell therapy and the latest advances that will eventually translate into clinical practice. In this review, we discuss the various applications of exosomes derived from iMSCs in clinical medicine

    A new framework for host-pathogen interaction research

    Get PDF
    COVID-19 often manifests with different outcomes in different patients, highlighting the complexity of the host-pathogen interactions involved in manifestations of the disease at the molecular and cellular levels. In this paper, we propose a set of postulates and a framework for systematically understanding complex molecular host-pathogen interaction networks. Specifically, we first propose four host-pathogen interaction (HPI) postulates as the basis for understanding molecular and cellular host-pathogen interactions and their relations to disease outcomes. These four postulates cover the evolutionary dispositions involved in HPIs, the dynamic nature of HPI outcomes, roles that HPI components may occupy leading to such outcomes, and HPI checkpoints that are critical for specific disease outcomes. Based on these postulates, an HPI Postulate and Ontology (HPIPO) framework is proposed to apply interoperable ontologies to systematically model and represent various granular details and knowledge within the scope of the HPI postulates, in a way that will support AI-ready data standardization, sharing, integration, and analysis. As a demonstration, the HPI postulates and the HPIPO framework were applied to study COVID-19 with the Coronavirus Infectious Disease Ontology (CIDO), leading to a novel approach to rational design of drug/vaccine cocktails aimed at interrupting processes occurring at critical host-coronavirus interaction checkpoints. Furthermore, the host-coronavirus protein-protein interactions (PPIs) relevant to COVID-19 were predicted and evaluated based on prior knowledge of curated PPIs and domain-domain interactions, and how such studies can be further explored with the HPI postulates and the HPIPO framework is discussed

    p17 from HIV induces brain endothelial cell angiogenesis through EGFR-1-mediated cell signalling activation

    Get PDF
    © 2018, United States & Canadian Academy of Pathology. HIV-associated neurocognitive disorder in HIV patients substantially reduces their quality of life. We previously showed that the HIV matrix protein, p17 could stimulate lymph-angiogenesis in vitro potentially contributing to lymphoma tumour growth and in addition is associated with vascular activation in neuro-degenerating brain tissue; here, therefore, we have investigated the detailed molecular mechanisms of this action. We performed in vitro cell culture, angiogenesis experiments, phospho-protein microarrays and Western blotting to identify cellular signalling induced by p17 within human brain endothelial cells (HbMEC), and inhibitor studies to block p17-induced vascular growth. We also characterised the effects of hippocampal CA1 injection of p17 on epidermal growth factor receptor-1 (EGFR1) expression linked to our murine model of dementia. p17 strongly induced angiogenesis of HbMEC (migration, tube formation and spheroid growth). p17 concomitantly increased phosphorylation of EGFR1 as well as down-stream intermediates ERK1/2, FAK, PLC-γ and PKC-β whilst an inhibitor peptide of EGFR, blocked cell signalling and angiogenesis. Finally, Mice that showed reduced cognitive function and behavioural deficiencies after p17 injection, demonstrated that p17 localised in cortical microvessels and also neurones many of which stained positive for p-EGFR1 by histology/IHC. This work provides strong support that p17 may be involved in initiating and/or perpetuating vascular tissue pathophysiology associated with comorbidity in HIV patients

    Theoretical modeling of small-scale domain switching and fracture of ferroelectric materials

    No full text
    The intrinsic electromechanical properties and quick response to external excitations make ferroelectrics an ideal material for fabrication of sensors, actuators and adaptive (smart) structures. Ferroelectrics have been increasingly employed beyond the linear regime as characterized by linear piezoelectricity. Electric fields and forces required to achieve large actuation result in mechanical and electrical degradation. Understanding of coupled electromechanical behavior and fracture mechanics of ferroelectrics is very important to the reliability and efficient design of devices made out of them. Some problems related to fracture mechanics of ferroelectrics are investigated theoretically in this thesis. A unique feature of ferroelectrics is their ability to rotate the direction of spontaneous polarization (i.e. domain switching) by 180° or non-1800, when subjected to a large electric field or stress. Domain switching is the major source of material non-linearity and has a significant influence on crack-tip electroelastic field. By examining the change of free energy before and after switching of an elliptic crystallite in a poled ferroelectric, a domain switching criterion which predicts the critical loading to trigger polarization switching is proposed for ferroelectric materials. This new criterion considers the interaction of the applied field with the switching strains and polarization and the change of electroelastic properties of the switched domain. A theoretical model similar to transformation toughening of zirconia-containing ceramics is proposed to investigate the effects of small-scale domain switching at a crack tip on crack tip field intensity factors. The new domain-switching criterion is used to predict the switching zone around a crack tip. A fundamental solution for a crack interacting with stress-free transformation strains and electric field-free polarization is obtained by using the Leknitskii's formalism. A Reuss-type approximation is proposed to model polycrystalline ferroelectrics. The influence of electromechanical loading and polar direction on apparent fracture toughness is numerically investigated for insulating and conducting cracks and qualitatively compared with available experiments. The theoretical models are extended to analyze the electroelastic field at the tip of a closed insulating (or conducting) crack or an embedded electrode. The effect of domain switching on the near-tip field is examined. The tensile stress ahead of a closed crack tip may lead to crack growth, while the intensified stress at an electrode-ceramic interface may lead to segmentation cracks and electrode delamination as observed in experimental studies of multi-layer stack actuators.Applied Science, Faculty ofMechanical Engineering, Department ofGraduat

    FPGA-Based High Throughput Merge Sorter

    No full text
    As database systems have shifted from disk-based to in-memory, and the scale of the database in big data analysis increases significantly, the workloads analyzing huge datasets are growing. Adopting FPGAs as hardware accelerators improves the flexibility, parallelism and power consumption versus CPU-only systems. The accelerators are also required to keep up with high memory bandwidth provided by advanced memory technologies and new interconnect interfaces. Sorting is the most fundamental database operation. In multiple-pass merge sorting, the final pass of the merge operation requires significant throughput performance to keep up with the high memory bandwidth. We study the state-of-the-art hardware-based sorters and present an analysis of our own design. In this thesis, we present an FPGA-based odd-even merge sorter which features throughput of 27.18 GB/s when merging 4 streams. Our design also presents stable throughput performance when the number of input streams is increased due to its high degree of parallelism. Thanks to such a generic design, the odd-even merge sorter does not suffer throughput drop for skewed data distributions and presents constant performance over various kinds of input distributions.Electrical Engineering | Microelectronic

    Jammer Suppression in DS-CDMA Communications using Parafac-based Blind Separation

    No full text
    In this paper we propose to apply parafac-based source separation techniques for jammer suppression in direct spread spectrum communication systems. The jammer excision is formulated as an optimization problem and a new algorithm is presented which is based on the parafac tri-iterative least square algorithm. By jointly diagonalizing the time delay correlation matrix of the observed signals and using the new proposed method, a better solution is achieved. The proposed algorithm can successfully separate communication signals and jamming signals. Simulation results reveal that our proposed algorithm has the better blind signal separation performance than joint diagonalization method. Our proposed algorithm doesn’t require whitening processing. Moreover our proposed algorithm works well in the underdetermined condition, where the number of sources exceeds than the number of antennas
    corecore