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Abstract  

HIV-associated neurocognitive disorder in HIV patients substantially reduces their quality of life. We 

previously showed that the HIV matrix protein, p17 could stimulate lymph-angiogenesis in vitro 

potentially contributing to lymphoma tumour growth and in addition is associated with vascular 

activation in neuro-degenerating brain tissue; here, therefore, we have investigated the detailed 

molecular mechanisms of this action. We performed in vitro cell culture, angiogenesis experiments, 

phospho-protein microarrays and Western blotting to identify cellular signalling induced by p17 within 

human brain endothelial cells (HbMEC), and inhibitor studies to block p17-induced vascular growth. 

We also characterised the effects of hippocampal CA1 injection of p17 on EGFR-1 expression linked to 

our murine model of dementia. p17 strongly induced angiogenesis of HbMEC (migration, tube 

formation and spheroid growth). p17 concomitantly increased phosphorylation of EGFR1 as well as 

down-stream intermediates ERK1/2, FAK, PLC-γ and PKC-β whilst an inhibitor peptide of EGFR, blocked 

cell signalling and angiogenesis. Finally, Mice that showed reduced cognitive function and behavioural 

deficiencies after p17 injection, demonstrated that p17 localised in cortical microvessels and also 

neurones many of which stained positive for p-EGFR1 by histology/IHC. This work provides strong 

support that p17 may be involved in initiating and/or perpetuating vascular tissue pathophysiology 

associated with comorbidity in HIV patients. 
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Introduction 

Recent statistics show that still only 53% of approximately 40 million people living with HIV receive 

anti-retroviral therapy. The overall prevalence of major comorbidity varies between geographical 

location and quality of life, however, in spite of HAART, it ranges between approximately 29% and 

>60% (ages 18-49) 1-3 with a health service associated costs running into the billions. For example, in 

Brent, London, UK, approximately 20% of CVD cases were diagnosed in people under the age of 49 

with HIV, remaining significantly higher than the control population. Interestingly, however, the 

presence of comorbidities does not seem to be related to the time elapsed since diagnosis of HIV, 

suggesting a level of independency, and/or independent as yet un classified pre-determinates 2. We 

propose that the protein p17 produced by HIV may have a causative role in accelerated progression 

of three of the major comorbidities those being neurocognitive decline, cancer, particularly 

lymphoma, and CVD with a specific relevance to its potent angiogenic capabilities 4, 5.  

P17 is an HIV matrix protein that is critically involved in most stages of the retroviral life-cycle. In 

addition, p17 is a highly active signal transduction molecule and promotes activated T-cell secretion 

of cytokines 6. It remains present in the circulation of HAART-treated patients 7 and can bind to 

CXCR1/2 receptors stimulating angiogenesis in EC and activation of B cell growth 4, 8, 9. P17 is released 

in the extracellular space from HIV-1-infected cells and is easily detected in the plasma and tissue 

specimens 6, 10-12 of patients, including those successfully treated with highly active antiretroviral 

therapy (HAART) 10. 

Disruption of neurocognitive functioning is one of the most frequent complications in patients 

infected with HIV. This is a common reason for consultation in HIV patients and it negatively affects 

their quality of life, treatment adherence and life span. Since the introduction of Highly Active 

Antiretroviral Therapy (HAART), the spectrum of HIV-associated neurocognitive disorders (HAND) has 

been radically changed, with a significant reduction in dementia but a high prevalence of 

asymptomatic and mild neurocognitive impairments remains. Currently, in clinical practice, patients 

with HIV commonly experience memory, concentration or planification problems, even when virology 

is under control.  These usually begin with subtle changes but it can lead to more severe forms of 

neurocognitive impairment. Before the introduction of HAART, HIV associated neurocognitive 

impairment was considered a significant independent risk factor for death from AIDS. Later, it was 

shown that, although the median survival of patients with HAND has decreased considerably, it 

continues to be a negative prognostic factor associated with mortality 13, 14.   



The pathological cause of cognitive decline in HIV patients is not fully understood; however, 

pathophysiological changes accompanying HAND include alterations in sphingolipid metabolism and 

in the frequency of viral astrocyte infection leading to glutamate accumulation and EC apoptosis, and 

dysfunctional autophagy of neurons 16. In addition, monocyte activation, measured by microarray 

examination of gene profiles from HIV-positive patients, correlated with cognitive impairment, even 

in subjects controlled with HAART therapy 17. HIV-induced signalling within the brain has been linked 

to neurotoxicity, most likely through deregulated GSK3β and CDK5 signalling pathways via cell surface 

receptors including CXCR4, NMDA and Notch1 18. Recently, Montoya et al (2017) 19, showed increased 

expression of vascular endothelial cell growth factor, angiopoietin-2 and Tie-2 associated with arterial 

fibrosis, arterial stiffening and altered pulse pressure in patients with neurocognitive disturbance and 

HIV. Similarly, Yen et al (2017) 20 showed a strong correlation between glomerular filtration rate and 

neurocognitive decline in HIV positive individuals leading to a body of thinking around a direct 

relationship between vascular cognitive impairment associated to HIV disorder 21. We previously 

showed that p17 from HIV caused dementia-like symptoms in a murine model following hippocampal 

injection 5. In addition, there was a strong association between p17 staining and microvessel activation 

in human brain sections analysed by immunohistochemistry, suggesting a potential modulatory role 

in angiogenesis 8.  

Extracellularly, p17 has been found to be a highly active signal transducing molecule, capable of 

deregulating biological activities of many different cells that are directly involved in AIDS pathogenesis 

9, 11, 26-29. In particular, p17 is able to activate monocytes and T-cells by promoting the secretion of pro-

inflammatory chemokines and cytokines 26-28. Our unpublished data shows that p17 has an important 

impact on coagulation and thrombosis, increasing vWF storage and secretion in EC, inducing platelet-

monocyte aggregation and inducing coagulation and thrombosis directly in vivo (submitted 

elsewhere), therefore, a role for this protein in stimulation of early-onset and unstable CAD is likely. 

The incidence of lymphoma in people with HIV is far greater (66% higher) than that of the general 

population (1000 fold prior to HAART). Once again, the exact mechanisms responsible are not 

understood although immunosuppression and cytokine de-regulation, as well as the presence of the 

Epstein Barr infection, are thought to play an important role 30, 31. Post HAART, the incidence has fallen, 

particularly with long-term treatment e.g. the incidence of aggressive B-cell lymphomas fell from 38% 

to 19% although this figure is still highly significant 32, 33.  

Mthembu et al (2017) 37 demonstrated that aberrant angiogenic protein formation from mRNA gene 

splicing was associated with increased prevalence of Kaposi’s sarcoma, cervical cancer and lymphoma, 

suggesting the importance of the vascular system in tumour growth. Recently, Giagulli et al, (2017) 38, 



showed that a single amino acid substitution in the p17 protein (making S75X) was able to predict B-

cell activity and lymphomagenesis, and the same group showed previously that p17 stimulated 

lymphoma growth and metastasis through lymph-EC growth and activation via CXCR receptors and 

endothelin-1 4.   

In this study, we provide strong evidence that p17 protein may contribute to development of these 

major comorbidities in HIV-positive patients via induction of aberrant cell signalling, angiogenesis and 

vascular dysfunction and we defined an axis of the mechanism through activation of the EGF-R.  

Materials and Methods 

Recombinant Proteins and Antibodies 

Purified endotoxin (LPS)-free recombinant HIV-1 matrix protein p17 (in its monomeric form) was 

produced as previously described 29. The absence of endotoxin contamination (< 0.25 endotoxin 

units/ml) in the protein preparation was assessed by a Limulus amoebocyte assay (Associates of Cape 

Cod). The p17 mAb MBS-3 10 was produced in our laboratory. 

 

Kinexus array and Western blot Analysis 

HbMEC were seeded in complete endothelial growth basal medium-2 (EBM-2) in a 6-well plate at a 

cell concentration of 105/ml/well and incubated in a water-saturated incubator at 37°C and 5% CO2. 

After 48 h incubation, the medium was renewed with serum poor medium (SPM, containing 0.5% FBS 

without growth factors) and cells incubated for further 24 hours (with or without EGFR neutralising 

antibody (10μg/ml) or tetracycline (10µg/ml).  Next, 5μg/ml p17 was added and the cells incubated 

for 8 min at 37°C. Cells were lysed directly following removal of the medium with 120µl/well of ice-

cold radioimmunoprecipitation (RIPA) buffer (pH 7.5) containing 25mM Tris-HCl, 150mM NaCl, 0.5% 

sodium deoxycholate, 0.5% SDS, 1mM EDTA, 1mM sodium orthovanadate (EGTA), 1mM 

phenylmethylsulfonyl fluoride (PMSF), 1% Triton X100 and 1µM leupeptin. The protein concentration 

of cell lysates was determined using the Bradford protein assay (Bio-rad, Munchen, Germany) and 

equal quantities of proteins (15µg) were mixed with 2 × Laemmli sample buffer, boiled in a water bath 

for 15min then centrifuged. Samples were separated along with pre-stained molecular weight markers 

(32,000 – 200,000 Da) by 12% SDS-PAGE. Proteins were electroblotted (Hoefer, Bucks, UK) onto 

nitrocellulose membranes (1h) and the membranes were blocked for 1h at room temperature in TBS-

Tween (pH 7.4) containing 1% bovine serum albumin (BSA). Membranes were labelled with the 

following primary antibodies diluted in the blocking buffer, overnight at 4°C on a rotating shaker: 



mouse monoclonal antibodies to phospho-PLC-ɣ, phosphor-PKCβ1, and p-EGFR (Ty1173), rabbit 

polyclonal antibodies to p-FAK (Y397) p-ERK1/2; in this case, cells were cultured with p17 for 24hours) 

and mouse monoclonal antibodies to β-tubulin (1:1000) from Santa Cruz Biotechnology. After washing 

(5 x 10 min in TBS-Tween at room temperature), membranes were incubated with either goat anti-

rabbit or rabbit anti-mouse horse-radish peroxidase-conjugated secondary antibodies diluted in TBS-

Tween containing 5% de-fatted milk (1:1000, 1 h, room temperature) with continuous mixing. After a 

further 5 washes in TBS-Tween, proteins were visualized using enhanced chemiluminescence (ECL) 

detection system (Geneflow). Experiments were repeated at least twice and a representative example 

is shown. 

 

Cell culture  

HbMECs were seeded in T75 flask pre-coated with 0.01% Poly-L-Lysine (Sigma, UK) and cultured in 

EBM-2, supplemented with growth factors and 2% foetal bovine serum (FBS) (Lonza, UK). At 

confluence, HbMECs were identified by their typical cobblestone morphology and “hill and valley” 

configuration, respectively. The cells used throughout the study were between passages 4 and 9. For 

inhibition assays, p17 protein/ and inhibitors were used/pre-incubated at the times and 

concentrations stated in the individual sections. 

 

MatrigelTM endothelial tube formation assay: 

The preparation of HbMECs was performed as described above. Briefly, 50µl of MatrigelTM basement 

membrane Matrix reduced in growth factors (BD Bioscience, UK) was added to each well in 96-well 

plate and then incubated at 37°C for 60 min to let the MatrigelTM polymerise. After that, 9×103/50µl 

cells were added to each well including the conditions in low serum (0.5% FBS) EBM-2 media with or 

without the scalar amount of tested compound. Then the cells were incubated for 24 hours at 37°C, 

at the same concentration as in the test samples, was also added to a group of controls in all 

experiments. After the 24-hour-incubation, HbMECs migrated and aligned to form tubes (defined by 

the enclosure of circumscribed areas), a parameter of quantification. The number of closed tube-like 

structures was counted with a Zeiss phase contrast microscope. For the counting of enclosed areas, 

the cells were fixed with 4% PFA for 15 min and counts made in five fields by microscopy using the x 

10 objective. FGF-2 (25ng/ml) was used as a positive control and EGFR-blocking peptide (Abcam 

ab2432; 10μg/ml) was incubated with the HbMEC cell mixture prior to plating to test the importance 



of the EGFR in P17-induced angiogenic signalling. Experiments were repeated three times, each from 

3 wells of a 96 well plate and results are shown as mean ± S.D. 

Spheroids sprout assay method: 

HbMEC cells were maintained in EBM-2 medium (Lonza, UK) containing 2% FBS and growth factors. 

The cells were starved (in 0.5% FBS) 24 hours.  

After the initial trypsinisation stage, cells (6×105 cells/ml suspended in EBM-2 medium) were added to 

non-adhesive 96-well Greiner® plates (Sigma, UK) for suspension culture. Firstly, 3ml of 

methylcellulose was made up with 15ml of EBM-2 medium, from this 15ml were added to 250µl of 

the initial cell volume. The cells (150µl/well) were then added to the 96-well plates and incubated in 

a humidified 5% CO2 incubator at 37°C for 24 hours. 

In a separate bijou, 1.33ml of collagen gel solution (Sigma UK) at (2μg/ml) was added to 920µl of EBM-

2 medium and kept on ice. Before adding the spheroids in the 24-well plate, the collagen solution was 

neutralised by adding 150µl 0.1 N NaOH. The spheroids were collected, added to 15ml tubes and 

centrifuged at 400×g for 3 min. When a clear pellet was distinguished, the supernatant was removed 

and kept the pellet at about 112.5μl per tube, 25μl of conditions (FGF-2 at 250ng/ml, p-17 at 50μg/ml 

and EGFR neutralising antibody at 100μg/ml) and 112.5μl methylcellulose gel was added, then mixed 

well with gentle. The conditions were added, and SPM [0.5% (v/v) FBS EBM-2] was applied to the cells. 

The spheroids were then added to the 24-well plates at 500 µl/well. They were incubated in a 

humidified 5% CO2 incubator at 37°C. After 24 hours, the spheroids were fixed with 4% (w/v) 

paraformaldehyde (PFA) for 15 min at room temperature and pictures were taken. Note: are pilot data 

and that of others indicates that spheroids prepared in this way can continue to grow over periods of 

72h and beyond, however the complications of cell division and integration into tubes over time 

determined our optimal time of incubation to be 24h when the impact of migration and sprouting 

alone can be measured most accurately. Sprouting occurred from the spheroid core, and the sprout 

length (mean ± SD) was estimated with the software Image-J using five spheroids with similar sizes of 

the core of spheroid from 3 wells of the plate. Representative examples are shown in the results. 

EC Migration assay:  

HbMEC were seeded respectively on 1 mm × 1 mm glass cover slips at a concentration of 4 × 10⁵ 

cells/ml in 1ml of completed EBM-2 medium in each well of a poly-L-lysine pre-coated 12-well plates 

and incubated in a water-saturated incubator at 37°C and 5% CO2. When cells reached about 80% 

confluence, the growth medium was replaced with serum poor medium [SPM, basal EBM-2 medium 



containing 0.5% (v/v) FBS] and incubated for further 24 hours. After the 24 hours of humidified 

incubation at 37°C in 5% CO2, each well of the 12-well plates was washed with warm PBS three times 

and the adherent cells were then scratched in one single continuous line across the glass cover slip 

using a razor blade and the wells were then washed carefully with warm PBS three times to remove 

any floating cells. Then conditions (FGF-2 at 25ng/ml, p-17 at 5μg/ml and EGFR neutralising antibody 

at 10μg/ml) were added, and SPM [0.5% (v/v) FBS EBM-2] was applied to the cells, then the cells were 

incubated under the same condition as mentioned above for 24 hours. 

After the 24 hours incubation, 100 µl of 4% (w/v) PFA was added to each well to fix the cells at room 

temperature (RT) for 15 min. The medium was then removed, and the wells were washed with PBS. 

100µl of 100% ethanol was added to the cells and left for 5 min. Then the ethanol was removed, and 

the wells were left to dry before staining the cells with methylene blue for 5 min. The stain was 

removed, and the wells were washed with distilled water (dH2O). Finally, the cells migration was 

assessed by phase contrast microscopy and images were taken using a digital camera (Zeiss). In this 

experiment, cells were treated in triplicate for each experimental condition and pictures of five areas 

of each well were taken. The picture analysis was performed using Image-J. Both migration distance 

and number of migrated cells were measured and the mean ± SD are given. Each experiment was 

performed three times and representative example is given. 

Immunohistochemistry and Immunofluorescent staining: 

Immunohistological analysis was carried out on murine brains following intra-hippocampal injection 

of p17 as described in our previously published work 5 to determine the localization of p17. Brains, 

fixed in 4% paraformaldehyde in 100 mM PB and paraffin, were processed according to standard 

histological protocols (n=5 mice were used that were p17-injected; 10 sections from each analysed). 

Sections were incubated at room temperature over night with the monoclonal anti-p17 MBS-3 

antibody (1:100 vol/vol), and/or anti-phospho-EGFR1 antibody (Abcam 5644, Y1068), sections were 

washed three times with 10mM PBS, pH 7.4 and then incubated for 1 h with the appropriate secondary 

antibodies: rabbit anti-mouse biotinylated (Vector Labs; 1:500 dilution vol/vol), 3,3' diaminobenzidine 

(DAB, Vector Labs, UK) or Nickel DAB (N-DAB, Vector Labs, UK) for immunohistochemistry. Images 

were captured with Nikon 80i Digital Microscope using Nis Elements 3.21 software with multichannel 

capture option. Negative control slides were included where the primary antibody was replaced with 

5mM PBS, pH 7.4. 

Statistical analysis  



Data are presented as the mean ± SD. Statistical analysis was performed using GraphPad Prism 

software version 7.0 for Windows (GraphPad Software). The values were compared using paired 

Student’s t-test or non-parametric Wilcoxon test. The differences at p < 0.05 were considered 

statistically significant. 

Results 

P17 stimulated angiogenesis in HbMEC: 

P17 (5µg/ml) stimulated spheroid sprout formation significantly (*) increasing both the number and 

length of sprouts compared to the control (Figure 1a) Figure 1b, shows that when 2 spheroids are 

placed adjacent to each other, p17 has the capability to induce chemotactic response as shown by 

polarised directional movement of cells (arrow). In comparison FGF-2 produced a less “aggressive” 

none-polarised movement of cells from one spheroid to another. Regarding migration (in a scratch 

wound assay) p17 stimulated cell movement into the denuded area to a similar degree as the FGF-2 

positive control after 24h incubation (Figure 1c). Note the directional ‘streaming’ of cells in wounds 

induced by p17 (arrows). Tube-like-structure formation was significantly stimulated by p17 (5µg/ml; 

24h) with tubes similar in size and thickness to those formed using the positive control FGF-2 (25ng/ml; 

Figure 1d). With such a strong activation of angiogenesis we attempted to dissect the possible 

mechanisms through which HbMEC were stimulated. All experiments were performed at least twice 

in triplicate and a representative example is shown. * indicates p<0.05 and significance.  

 

p17 induced HbMEC angiogenic signal transduction activation/protein phosphorylation through 

EGFR1. 

Kinexus phospho-protein-array analysis (KAMTM 1.2-500), carried out using HbMEC exposed to p17 for 

8 minutes identified increased EGFR1 phosphorylation at amino acid residue Y1172 in addition to 

other protein phospho-up-regulation that is associated with angiogenesis (e.g. MEK/ERK and PLC-γ1; 

Table 1). Western blotting confirmed up-regulation of EGFR-1-Y1172, ERK1/2 and PLC-γ1 and also the 

upstream protein FAK, strongly associated with EC migration through Rho GTPases. Importantly, a 

specific blocking peptide (Abcam-2432/10μg/ml) was able to significantly perturb EGFR1 

phosphorylation by p17 Figure 2a), and in addition, down-stream cell signalling via PLCγ1, PKC-β, and 

ERK1/2, whilst having a weaker/or no notable inhibitory effect on FGF-2-induced phospho-protein 

signalling (Figure 2a). For an unknown reason, FAK-phosphorylation was increased beyond control 



basal levels in the presence of the EGFR inhibitory peptide. All experiments were performed at least 

twice in triplicate and a representative example is shown.  

HbMEC angiogenesis was dependent on EGFR signalling  

Pre-incubation with the EGFR-inhibitor peptide blocked HbMEC angiogenesis, inhibiting significantly, 

p17 (5µg/ml) -induced spheroid sprout formation (Figure 3a), scratch-wound healing (Figure 3b), and 

tube-like-structure formation (Figure 3c), and whilst only weakly and none-significantly affecting FGF-

2-induced angiogenesis (except in the case of sprouting from spheroids where FGF-2 induced 

sprouting was impaired by around 25%). All experiments were performed at least twice in triplicate 

and a representative example is shown. * indicates p<0.05 and significance. 

 

EGFR was over-expressed in EC in mice following hippocampal injection of p17: 

Mice, euthanized after 4 months following stereotactic administration of p17 into the 

hippocampalCA1 region, had the brains removed and histological sections cut all the way through 

transversely. Here, we show by immunohistochemistry examination of n=5 animals that injection of 

p17 caused a notable increase in the presence of phosphorylated EGFR1 in local cortical microvessels 

and co-localised with p17 (DAB brown-EGFR and Nickel DAB-p17) i at x 40 and ii at x 200). Local cortical 

neurones also showed cytoplasmic staining of the EGFR (iii) and some hippocampal neurones (iv; 

arrows) (Figure 4).  Staining for EGFR (phospho) was not seen in sham-operated untreated animals (v) 

and (v1) shows a control IHC with the primary antibody replaced by PBS. For a detailed assessment of 

the IHC and histology as well as cognitive and behavioural profiles from these animals and 

experiments, where we show that injection of the protein causes significant cognitive impairement, 

please see Zeinolabediny et al, (2017) 5.  Note: data showing the neurocognitive impact of the injection 

of p17 protein into the mouse hippocampus are shown for convenience as Supplementary Figures 1 

and 2.  

 

Discussion 

We previously demonstrated that p17 from HIV can be found within the brain of HIV-infected patients 

with dementia, and in addition, we have considerable evidence supporting potent biological 

properties, stimulating lymphangiogenesis and B-cell activation in vitro 7, 9, 39. Here, we show a clear 

role for p17 in the promotion of vascular activation and detail the p17-intracellular signalling pathway 



operating through EGFR whilst identifying a potential orphan drug that could perturb its aberrant 

biological properties.  

In reference to angiogenesis, considering our previous finding that cortical microvessels of p17-

hippocampal injected mice retain and express p17 concomitant with CD105 (a marker of activation 

and angiogenesis in EC), our in vitro experiments went on to investigate how p17 might influence the 

angiogenic process.  

P17 strongly stimulated migration, sprouting, chemotaxis and tube-like-structure formation in 

HbMEC, with a similar potency to FGF-2 a known angiogenic mitogen. So far, the pathobiological and 

physiological relevance of activating brain microvessels and its impact upon a possible 

neurodegenerative process is not known. However, excessive improper vascularization could result in 

non-patent vasculature, haemorrhage and neuronal hypoxia through abnormal remodelling 40.  In 

addition, vascular activation is now considered to be a critical process in the establishment of 

neurodegenerative progression. For example, in two separate transgenic murine models of AD, the 

cerebro-vasculature was studied in detail and was found to be activated with overexpression of 

amyloid beta, thrombin, tumour necrosis factor alpha, interleukin-1 beta, interleukin-6, and matrix 

metalloproteinase-9. Drug-inhibition (sunitinib) significantly reduced vascular expression of these 

proteins, concomitantly improving cognitive function and reducing associated brain inflammation 41.  

Aberrant EGFR signalling could predispose brain or other microvessels towards accelerated vascular 

angiogenesis and dysfunction, and has been identified recently as part of a network cluster within the 

CSF and plasma proteome-as a significant gene associated with AD risk 42. In addition, EGFR-Aβ fusion 

constructs expression dramatically enhanced neuronal cell death via ASK1/JNK signalling pathways 

implicating it in a role under these circumstances linked to neurodegeneration 43. Aβ also induced 

apoptosis of rat PC12 cells via FAK stimulation through NF-kB and ERK1/2 44, suggesting this pathway 

activation through p17 could damage the hippocampal and cortical neurons we observed staining 

positive, although these processes require further detailed investigation 

An in-direct role for HIV has been postulated in driving HIV-associated lymphoma the disease via 

enhanced cytokine production and loss of immune function, since the virus does not enter into the 

genome of B-cells 45. However, the importance of lymphangiogenesis in sustaining growth and 

metastasis of the tumours is critical 46, and we previously showed that p17 was capable of stimulating 

the production of several angiogenic growth factors including endothelin-1and inducing lymphatic EC 

growth through an autophagy-based pathway 47. Here, we have performed a detailed study on HbMEC 



and shown that p17 stimulates angiogenesis through the EGFR1 and this may be a critical component 

of T-cell metastasis through Rac-1 signalling 48.   

There are several studies now strongly implicating ‘unstable’ atherosclerotic plaque thrombosis and 

aberrant or enhanced angiogenesis in combination with sheer stress or other risk factors 49. Cases of 

acute coronary thrombosis in HIV positive individuals also occur often at young ages 50. Concurrent 

activation of platelets, monocytes and EC by p17 from HIV-most certainly promotes a thrombotic 

inflammatory environment that might pre-dispose these individuals to early onset AMI 51. Hence, 

previous findings of the pro-monocytic activation of p17 52, platelet aggregating and tissue factor 

stimulation (submitted elsewhere) and here, angiogenic capabilities, indicate a mechanism through 

which this co-morbidity could develop. 

We provide data here showing that direct inhibition of the EGFR1 using a blocking peptide is sufficient 

to abrogate angiogenesis mediated by p17. So far we are not sure of the exact mechanism (specific 

interactions between p17 and the EGFR/EGF or other) but this provides evidence demonstrating a 

critical interaction via the EGFR/EGF axis and a potential therapeutic opportunity for prevention of 

p17-induced HIV complications.  

In conclusion, we have identified a critical pathway of p17 action through stimulation of EGFR 

signalling that may contribute to comorbidity development in HIV patients. What the potential 

implications of these findings may be when linked to cognitive decline/dementia and other 

comorbidities such as lymphoma development and aggression is not sure at this time. However, 

stimulation of angiogenesis /lymph angiogenesis through EGFR activation could help us to understand 

how lymphoma and possibly other tumours are initiated or perpetuated in HIV-positive individuals. In 

HAND, we are still not sure of the role (if any) of p17 in activation or control of neuronal or glial 

behaviour-we could postulate that abnormal vascularization as shown in this work could impact on 

vascular types of dementia but this also remains to be proven.    

 

Figure legends:    

Figure 1: a- p17 stimulates HbMEC spheroids. b- p17 induces HbMEC spheroid directional sprouting 

and chemotaxis attraction to each other. c- p17 promotes HbMEC migration. d- p17 promotes HbMEC 

tube formation. HbMEC treated with FGF2 25ng/ml were used as positive control. Each test was 

conducted in triplicate and statistical analysis performed using the Wilcoxon matched pair test. The 

bar chart represents the relative inhibition compared with control cells. 

Figure 2. a- Western blotting demonstrated p17-induced phosphorylation of angiogenic signalling 

intermediate’s in HbMEC. And shows increased expression of p-EGFR, p-ERK1/2, p-PLCγ1, p-PKCβ1 



and p-FAK in p17 treated cells (8 minutes), notably reduced in the presence of the EGFR-peptide 

antagonist. Tubulin was as loading control. All experiments were repeated at least twice and a 

representative example is shown. 

Figure 3: a- HbMEC spheroids sprouting assay shows a significant block by EGFR neutralising receptor 

antagonist in p17-treated cells. b- p17 promoted HbMEC migration and this was significantly reduced 

in the presence of the EGFR antagonist. c- p17 promoted HbMEC tube formation was blocked by the 

EGFR antagonist. HbMEC treated with FGF2 25ng/ml were used as positive control. The bar chart 

represents the relative inhibition compared with control cells. Each test was conducted in triplicate 

and statistical analysis performed using the Wilcoxon matched pair test. Experiments were repeated 

at least twice and a representative example is given. 

Figure 4: Histology/IHC of p17 in the CA1 hippocampus and local cortical regions. Showed that EGFR 

was observed in local cortical microvessels (i x 40 and ii x 200; Nickel DAB and p17-DAB brown; arrows). 

iii shows cytoplasmic localization of EGFR in cortical neurones adjacent to the p17 injection point 

(Nickel-DAB; x 400). And iv, shows EGFR expression in local hippocampal neurones (arrows; vector 

blue x 400). v shows non-injected control hippocampal region with negative EGFR staining whilst vi, 

shows control IHC with the primary antibody replaced by PBS. In all 10 sections from five p17-injected 

murine brains were analysed together with 3 control mice. 

Table 1: : Selected Kinexus phospho-protein proteomics assay  
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