73 research outputs found

    Global sparse momentum SGD for pruning very deep neural networks

    Get PDF
    Deep Neural Network (DNN) is powerful but computationally expensive and memory intensive, thus impeding its practical usage on resource-constrained frontend devices. DNN pruning is an approach for deep model compression, which aims at eliminating some parameters with tolerable performance degradation. In this paper, we propose a novel momentum-SGD-based optimization method to reduce the network complexity by on-the-fly pruning. Concretely, given a global compression ratio, we categorize all the parameters into two parts at each training iteration which are updated using different rules. In this way, we gradually zero out the redundant parameters, as we update them using only the ordinary weight decay but no gradients derived from the objective function. As a departure from prior methods that require heavy human works to tune the layer-wise sparsity ratios, prune by solving complicated non-differentiable problems or finetune the model after pruning, our method is characterized by 1) global compression that automatically finds the appropriate per-layer sparsity ratios; 2) end-to-end training; 3) no need for a time-consuming re-training process after pruning; and 4) superior capability to find better winning tickets which win the initialization lottery

    Preparation and Performance Optimization of Two-Component Waterborne Polyurethane Locomotive Coating

    Get PDF
    This paper reports the effects of different formulas on the performance of waterborne polyurethane (WPU), including two-component WPU and curing agent, wetting dispersant, defoaming agent, and wetting agent. The optimization of rheological additives selection, through the optimization of coating physical properties and chemical properties, can make the film show uniform color and appearance without pinholes, bubbles, or wrinkles, and have a long probation period. Through the analysis of performance after a 1000-h quick ultraviolet (QUV) aging test, the light reduction rate is 23.19%, and the color difference is 1.9. As can be seen from the scanning electron microscope (SEM) image and the three-dimensional stereomicroscope, the film shows relatively uniform dispersion, good compactness, and smooth surface. The two-component WPU topcoat is found to have high gloss 87.1 (60°) and high weather resistance, which provides a positive indication for the modulation and production of waterborne locomotive paint

    A facile approach to fabrication of well-dispersed NiO-ZnO composite hollow microspheres

    Get PDF
    A novel, facile and template-free approach was developed for the fabrication of amorphous zinc-nickel citrate hollow microspheres and crystalline well-dispersed NiO-ZnO composite hollow microspheres. In this approach, amorphous zinc-nickel citrate hollow microspheres were prepared through a simple chemical reaction and with room temperature ageing at nickel nitrate solution. The zinc-nickel citrate hollow microspheres have an average size of about 1.4 μm. The average thickness of the shell is about 300 nm. The content of Ni in the zinc-nickel citrate can be simply adjusted by changing the ageing time. The well-dispersed NiO-ZnO composite hollow microspheres can be prepared via the perfect morphology inheritance of the zinc-nickel citrate hollow microspheres, by calcination at 500 °C for 2 h. The optical absorption of the samples can extend into the visible region after the loading of NiO. The NiO-ZnO composite hollow microspheres with the high content of NiO exhibit the highest photocatalytic activity for the degradation of different organic dyes including Rhodamine-B, methylene blue and methyl orange under UV irradiation, which might be ascribed to their highest separation efficiency of photogenerated electron-hole pairs. In addition, these NiO-ZnO composite photocatalysts can be used repeatedly without a significant decrease of the photocatalytic activity under UV irradiation. ? 2013 The Royal Society of Chemistry

    The Effect of Temozolomide/Poly(lactide-co-glycolide) (PLGA)/Nano-Hydroxyapatite Microspheres on Glioma U87 Cells Behavior

    Get PDF
    In this study, we investigated the effects of temozolomide (TMZ)/Poly (lactide-co-glycolide)(PLGA)/nano-hydroxyapatite microspheres on the behavior of U87 glioma cells. The microspheres were fabricated by the “Solid/Water/Oil” method, and they were characterized by using X-Ray diffraction, scanning electron microscopy and differential scanning calorimetry. The proliferation, apoptosis and invasion of glioma cells were evaluated by MTT, flow cytometry assay and Transwell assay. The presence of the key invasive gene, αVβ3 integrin, was detected by the RT-PCR and Western blot method. It was found that the temozolomide/PLGA/nano-hydroxyapatite microspheres have a significantly diminished initial burst of drug release, compared to the TMZ laden PLGA microspheres. Our results suggest they can significantly inhibit the proliferation and invasion of glioma cells, and induce their apoptosis. Additionally, αVβ3 integrin was also reduced by the microspheres. These data suggest that by inhibiting the biological behavior of glioma cells in vitro, the newly designed temozolomide/PLGA/nano-hydroxyapatite microspheres, as controlled drug release carriers, have promising potential in treating glioma

    Solidification for solid-state lithium batteries with high energy density and long cycle life

    No full text
    Conventional lithium-ion batteries with inflammable organic liquid electrolytes are required to make a breakthrough regarding their bottlenecks of energy density and safety, as demanded by the ever-increasing development of electric vehicles and grids. In this context, solid-state lithium batteries (SSLBs), which replace liquid electrolytes with solid counterparts, have become a popular research topic due to their excellent potential in the realization of improved energy density and safety. However, in practice, the energy density of SSLBs is limited by the cathode mass loading, electrolyte thickness and anode stability. Moreover, the crucial interfacial issues related to the rigid and heterogeneous solid-solid contacts between the electrolytes and electrodes, including inhomogeneous local potential distributions, sluggish ion transport, side reactions, space charge barriers and stability degradation, severely deteriorate the cycle life of SSLBs. Solidification, which converts a liquid into a solid inside a solid battery, represents a powerful tool to overcome the aforementioned obstacles. The liquid precursors fully wet the interfaces and infiltrate the electrodes, followed by in-situ conformal solidification under certain conditions for the all-in-one construction of cells with highly conducting, closely contacted and sustainable electrode/electrolyte interfaces, thereby enabling high energy density and long cycle life. Therefore, in this review, we address the research progress regarding the latest strategies toward the solidification of the electrolyte layers and the interfaces between the electrodes and electrolytes. The critical challenges and future research directions are proposed for the solidification strategies in SSLBs from both science and engineering perspectives

    Cell Chemistry of Sodium–Oxygen Batteries with Various Nonaqueous Electrolytes

    No full text

    Cell Chemistry of Sodium–Oxygen Batteries with Various Nonaqueous Electrolytes

    No full text
    Development of the nonaqueous Na–O<sub>2</sub> battery with a high electrical energy efficiency requires the electrolyte stable against attack of highly oxidative species such as nucleophilic anion O<sub>2</sub><sup>•–</sup>. A combined evaluation method was used to investigate the Na–O<sub>2</sub> cell chemistry with various solvents, including ethylene carbonate/propylene carbonate (EC/PC)-, <i>N</i>-methyl-<i>N</i>-propylpiperidinium bis­(trifluoromethansulfonyl) imide (PP13TFSI)-, and tetraethylene glycol dimethyl ether (TEGDME)-based electrolytes. It is found that the TEGDME-based electrolytes have the best stability with the predominant yield of NaO<sub>2</sub> upon discharge and the largest electrical energy efficiency (approaching 90%). Both EC/PC- and PP13TFSI-based electrolytes severely decompose during discharge, forming a large amount of side products. Analysis of the acid dissociation constant (p<i>K</i><sub>a</sub>) of these electrolyte solvents reveals that the TEGDME has the relatively large value of p<i>K</i><sub>a</sub>, which correlates with good stability of the electrolyte and high round-trip energy efficiency of the battery

    RESEARCH OF RUBBER FATIGUE OPTIMIZATION UNDER MULTIAXIAL LOADING

    No full text
    This paper introduces an analysis method,which combines the crack fatigue prediction theory and rubber elastic structure optimization,to optimize the structure of a rubber bushing. Using stress in rubber as the optimization parameters,the method can predict fatigue life of the rubber bushing by applying crack energy density. In summary,using the fatigue result,this new analysis method can predict rubber fatigue life and provide optimized structure of rubber parts. This combination of the crack fatigue prediction theory and rubber elastic structure optimization ensures the convenience of engineering application and provides a guidance to reduce rubber structure developing time
    corecore