74 research outputs found

    Robust Optical Data Encryption by Projection-Photoaligned Polymer-Stabilized-Liquid-Crystals

    Full text link
    The emerging Internet of Things (IoTs) invokes increasing security demands that require robust encryption or anti-counterfeiting technologies. Albeit being acknowledged as efficacious solutions in processing elaborate graphical information via multiple degrees of freedom, optical data encryption and anti-counterfeiting techniques are typically inept in delivering satisfactory performance without compromising the desired ease-of-processibility or compatibility, thus leading to the exploration of novel materials and devices that are competent. Here, a robust optical data encryption technique is demonstrated utilizing polymer-stabilized-liquid-crystals (PSLCs) combined with projection photoalignment and photopatterning methods. The PSLCs possess implicit optical patterns encoded via photoalignment, as well as explicit geometries produced via photopatterning. Furthermore, the PSLCs demonstrate improved robustness against harsh chemical environments and thermal stability, and can be directly deployed onto various rigid and flexible substrates. Based on this, it is demonstrated that single PSLC is apt to carry intricate information, or serve as exclusive watermark with both implicit features and explicit geometries. Moreover, a novel, generalized design strategy is developed, for the first time, to encode intricate and exclusive information with enhanced security by spatially programming the photoalignment patterns of a pair of cascade PSLCs, which further illustrates the promising capabilies of PSLCs in optical data encryption and anti-counterfeiting

    Thorium-doping induced superconductivity up to 56 K in Gd1-xThxFeAsO

    Get PDF
    Following the discovery of superconductivity in an iron-based arsenide LaO1-xFxFeAs with a superconducting transition temperature (Tc) of 26 K[1], Tc was pushed up surprisingly to above 40 K by either applying pressure[2] or replacing La with Sm[3], Ce[4], Nd[5] and Pr[6]. The maximum Tc has climbed to 55 K, observed in SmO1-xFxFeAs[7, 8] and SmFeAsO1-x[9]. The value of Tc was found to increase with decreasing lattice parameters in LnFeAsO1-xFx (Ln stands for the lanthanide elements) at an apparently optimal doping level. However, the F- doping in GdFeAsO is particularly difficult[10,11] due to the lattice mismatch between the Gd2O2 layers and Fe2As2 layers. Here we report observation of superconductivity with Tc as high as 56 K by the Th4+ substitution for Gd3+ in GdFeAsO. The incorporation of relatively large Th4+ ions relaxes the lattice mismatch, hence induces the high temperature superconductivity.Comment: 4 pages, 3 figure

    2D Materials Graphene related materials for thermal management Graphene related materials for thermal management

    Get PDF
    International audienceAlmost 15 years have gone ever since the discovery of graphene as a single atom layer. Numerous papers have been published to demonstrate its high electron mobility, excellent thermal and mechanical as well as optical properties. We have recently seen more and more applications towards using graphene in commercial products. This paper is an attempt to review and summarize the current status of the research of the thermal properties of graphene and other 2D based materials including the manufacturing and characterization techniques and their applications, especially in electronics and power modules. It is obvious from the review that graphene has penetrated the market and gets more and more applications in commercial electronics thermal management context. In the paper, we also made a critical analysis of how mature the manufacturing processes are; what are the accuracies and challenges with the various characterization techniques and what are the remaining questions and issues left before we see further more applications in this exciting and fascinating field. TOPICAL REVIE

    NF-kappaB P50/P65 hetero-dimer mediates differential regulation of CD166/ALCAM expression via interaction with micoRNA-9 after serum deprivation, providing evidence for a novel negative auto-regulatory loop

    Get PDF
    CD166/ALCAM plays an important role in tumor aggression and progression as well as protecting cancer cells against apoptosis and autophagy. However, the mechanism by which pro-cell death signals control CD166 expression remains unclear. Here we show that following serum deprivation (SD), upregulation of CD166 protein is shorter than that of CD166 mRNA. Molecular analysis revealed both CD166 and miR-9-1 as two novel NF-κB target genes in hepatoma cells. In vivo activation and translocation of the NF-κB P50/P65 hetero-dimer into the nucleus following the phosphorylation and accompanied degradation of its inhibitor, IκBα, contributes to efficient transcription of both genes following SD. We show that following serum starvation, delayed up-regulation of miR-9 represses translation of CD166 protein through its target sites in the 3′-UTR of CD166 mRNA. We also propose that miR-9 promotes cell migration largely due to inhibition of CD166. Collectively, the study elucidates a novel negative auto-regulatory loop in which NF-κB mediates differential regulation of CD166 after SD

    Metamagnetic transition in EuFe2_2As2_2 single crystals

    Get PDF
    We report the measurements of anisotropic magnetization and magnetoresistance on single crystals of EuFe2_2As2_2, a parent compound of ferro-arsenide high-temperature superconductor. Apart from the antiferromagnetic (AFM) spin-density-wave transition at 186 K associated with Fe moments, the compound undergoes another magnetic phase transition at 19 K due to AFM ordering of Eu2+^{2+} spins (J=S=7/2J=S=7/2). The latter AFM state exhibits metamagnetic transition under magnetic fields. Upon applying magnetic field with H∥cH\parallel c at 2 K, the magnetization increases linearly to 7.0 μB\mu_{B}/f.u. at μ0H\mu_{0}H=1.7 T, then keeps at this value of saturated Eu2+^{2+} moments under higher fields. In the case of H∥abH\parallel ab, the magnetization increases step-like to 6.6 μB\mu_{B}/f.u. with small magnetic hysteresis. A metamagnetic phase was identified with the saturated moments of 4.4 μB\mu_{B}/f.u. The metamagnetic transition accompanies with negative in-plane magnetoresistance, reflecting the influence of Eu2+^{2+} moments ordering on the electrical conduction of FeAs layers. The results were explained in terms of spin-reorientation and spin-reversal based on an AA-type AFM structure for Eu2+^{2+} spins. The magnetic phase diagram has been established.Comment: 10 pages, 8 figures. accepted for publication in New Journal of Physics as a special issue articl

    A Comprehensive Patient-Derived Xenograft Collection Representing the Heterogeneity of Melanoma

    Get PDF
    Therapy of advanced melanoma is changing dramatically. Following mutational and biological subclassification of this heterogeneous cancer, several targeted and immune therapies were approved and increased survival significantly. To facilitate further advancements through pre-clinical in vivo modeling, we have established 459 patient-derived xenografts (PDX) and live tissue samples from 384 patients representing the full spectrum of clinical, therapeutic, mutational, and biological heterogeneity of melanoma. PDX have been characterized using targeted sequencing and protein arrays and are clinically annotated. This exhaustive live tissue resource includes PDX from 57 samples resistant to targeted therapy, 61 samples from responders and non-responders to immune checkpoint blockade, and 31 samples from brain metastasis. Uveal, mucosal, and acral subtypes are represented as well. We show examples of pre-clinical trials that highlight how the PDX collection can be used to develop and optimize precision therapies, biomarkers of response, and the targeting of rare genetic subgroups
    • …
    corecore