217 research outputs found

    Detection and identification of huwentoxin-IV interacting proteins by biotin-avidin chemistry combined with mass spectrometry

    Get PDF
    <div><p>Background : Numerous spider toxins are of interest as tools for neurophysiological research or as lead molecules for the development of pharmaceuticals and insecticides. Direct detection and identification of the interacting proteins of a spider toxin are helpful for its action-mechanism analysis and practical application. The present study employed a combinative strategy for the analysis of interacting proteins of huwentoxin-IV (HWTX-IV), a peptidic neurotoxin from the venom of the spiderSelenocosmia huwena.Results : HWTX-IV was first lightly labeled with biotin under the optimized mild experimental conditions and the toxin labeled with a single biotin group (monobiotinylated HWTX-IV) was demonstrated by electrophysiological experiments to retain its original bioactivity and was used in combination with far-western blotting to detect its interacting proteins. Comparative experiments indicated that some membrane proteins from rat neuromuscular junction preparations bind to monobiotinylated HWTX-IV after being transferred onto a PVDF membrane from the SDS-gel. With capillary high performance liquid chromatography-tandem mass spectrometry, several membrane proteins with which HWTX-IV potentially interacted were identified from the preparations and then bioinformatically analyzed.Conclusions : This work has provided not only a new insight into the action mechanism of HWTX-IV but also a reference technology for the relevant researches.</p></div

    Editorial: Genomics-Enabled Triticeae Improvement

    Get PDF

    Cloning and Characterization of TaTGW-7A Gene Associated with Grain Weight in Wheat via SLAF-seq-BSA

    Get PDF
    Thousand-grain weight (TGW) of wheat (Triticum aestivum L.) contributes significantly to grain yield. In the present study, a candidate gene associated with TGW was identified through specific-locus amplified fragment sequencing (SLAF-seq) of DNA bulks of recombinant inbred lines (RIL) derived from the cross between Jing 411 and Hongmangchun 21. The gene was located on chromosome 7A, designated as TaTGW-7A with a complete genome sequence and an open reading frame (ORF). A single nucleotide polymorphism (SNP) was present in the first exon between two alleles at TaTGW-7A locus, resulting in a Val to Ala substitution, corresponding to a change from higher to lower TGW. Cleaved amplified polymorphic sequence (CAPS) (TGW7A) and InDel (TG9) markers were developed to discriminate the two alleles TaTGW-7Aa and TaTGW-7Ab for higher and lower TGW, respectively. A major QTL co-segregating with TaTGW-7A explained 21.7–27.1% of phenotypic variance for TGW in the RIL population across five environments. The association of TaTGW-7A with TGW was further validated in a natural population and Chinese mini-core collections. Quantitative real-time PCR revealed higher transcript levels of TaTGW-7Aa than those of TaTGW-7Ab during grain development. High frequencies of the superior allele TaTGW-7Aa for higher TGW in Chinese mini-core collections (65.0%) and 501 wheat varieties (86.0%) indicated a strong and positive selection of this allele in wheat breeding. The molecular markers TGW7A and TG9 can be used for improvement of TGW in breeding programs

    Physical and virtual carbon metabolism of global cities

    Get PDF
    Urban activities have profound and lasting effects on the global carbon balance. Here we develop a consistent metabolic approach that combines two complementary carbon accounts, the physical carbon balance and the fossil fuel-derived gaseous carbon footprint, to track carbon coming into, being added to urban stocks, and eventually leaving the city. We find that over 88% of the physical carbon in 16 global cities is imported from outside their urban boundaries, and this outsourcing of carbon is notably amplified by virtual emissions from upstream activities that contribute 33–68% to their total carbon inflows. While 13–33% of the carbon appropriated by cities is immediately combusted and released as CO₂, between 8 and 24% is stored in durable household goods or becomes part of other urban stocks. Inventorying carbon consumed and stored for urban metabolism should be given more credit for the role it can play in stabilizing future global climate

    Pivotal Role of Dogs in Rabies Transmission, China

    Get PDF
    The number of dog-mediated rabies cases in China has increased exponentially; the number of human deaths has been high, primarily in poor, rural communities. We review the incidence of rabies in China based on data from 1950 and 2004, obtained mainly from epidemiologic bulletins published by the Chinese Ministry of Health

    Targeting Inhibition of Accumulation and Function of Myeloid-Derived Suppressor Cells by Artemisinin via PI3K/AKT, mTOR, and MAPK Pathways Enhances Anti-PD-L1 Immunotherapy in Melanoma and Liver Tumors

    Get PDF
    Despite the remarkable success and efficacy of immune checkpoint blockade (ICB) therapy such as anti-PD-L1 antibody in treating cancers, myeloid-derived suppressor cells (MDSCs) that lead to the formation of the protumor immunosuppressive microenvironment are one of the major contributors to ICB resistance. Therefore, inhibition of MDSC accumulation and function is critical for further enhancing the therapeutic efficacy of anti-PD-L1 antibody in a majority of cancer patients. Artemisinin (ART), the most effective antimalarial drug with tumoricidal and immunoregulatory activities, is a potential option for cancer treatment. Although ART is reported to reduce MDSC levels in 4T1 breast tumor model and improve the therapeutic efficacy of anti-PD-L1 antibody in T cell lymphoma-bearing mice, how ART influences MDSC accumulation, function, and molecular pathways as well as MDSC-mediated anti-PD-L1 resistance in melanoma or liver tumors remains unknown. Here, we reported that ART blocks the accumulation and function of MDSCs by polarizing M2-like tumor-promoting phenotype towards M1-like antitumor one. This switch is regulated via PI3K/AKT, mTOR, and MAPK signaling pathways. Targeting MDSCs by ART could significantly reduce tumor growth in various mouse models. More importantly, the ART therapy remarkably enhanced the efficacy of anti-PD-L1 immunotherapy in tumor-bearing mice through promoting antitumor T cell infiltration and proliferation. These findings indicate that ART controls the functional polarization of MDSCs and targeting MDSCs by ART provides a novel therapeutic strategy to enhance anti-PD-L1 cancer immunotherapy
    • …
    corecore