3,221 research outputs found

    Ground state structure of high-energy-density polymeric carbon monoxide

    Get PDF
    Crystal structure prediction methods and first-principles calculations have been used to explore low-energy structures of carbon monoxide (CO). Contrary to the standard wisdom, the most stable structure of CO at ambient pressure was found to be a polymeric structure of Pna21Pna2_1 symmetry rather than a molecular solid. This phase is formed from six-membered (four carbon + two oxygen) rings connected by C=C double bonds with two double-bonded oxygen atoms attached to each ring. Interestingly, the polymeric Pna21Pna2_1 phase of CO has a much higher energy density than trinitrotoluene (TNT). On compression to about 7 GPa, Pna21Pna2_1 is found to transform into another chainlike phase of CcCc symmetry which has similar ring units to Pna21Pna2_1. On compression to 12 GPa, it is energetically favorable for CO to polymerize into a purely single bonded CmcaCmca phase, which is stable over a wide pressure range and transforms into the previously known CmcmCmcm phase at around 100 GPa. Thermodynamic stability of these structures was verified using calculations with different density functionals, including hybrid and van der Waals corrected functionals.J.S. is grateful for financial support from the MOST of China (Grants No. 2016YFA0300404 and No. 2015CB921202), the NSFC (Grants No. 51372112 and No. 11574133), the NSF of Jiangsu Province (Grant No. BK20150012), the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase), the Fundamental Research Funds for the Central Universities, and the Open Fund of the Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education (INMD-2016M01). C.J.P. and R.J.N. acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grants No. EP/G007489/2 (C.J.P.) and No. EP/J017639/1 (R.J.N.). C.J.P. is also supported by the Royal Society through a Royal Society Wolfson Research Merit Award. Some of the calculations were performed on the supercomputer in the High Performance Computing Center of Nanjing University and “Tianhe-2” at National Supercomputer Center in Guangzhou

    Composition of gut microbiota in infants in China and global comparison

    Get PDF
    published_or_final_versio

    Crack-Like Processes Governing the Onset of Frictional Slip

    Full text link
    We perform real-time measurements of the net contact area between two blocks of like material at the onset of frictional slip. We show that the process of interface detachment, which immediately precedes the inception of frictional sliding, is governed by three different types of detachment fronts. These crack-like detachment fronts differ by both their propagation velocities and by the amount of net contact surface reduction caused by their passage. The most rapid fronts propagate at intersonic velocities but generate a negligible reduction in contact area across the interface. Sub-Rayleigh fronts are crack-like modes which propagate at velocities up to the Rayleigh wave speed, VR, and give rise to an approximate 10% reduction in net contact area. The most efficient contact area reduction (~20%) is precipitated by the passage of slow detachment fronts. These fronts propagate at anomalously slow velocities, which are over an order of magnitude lower than VR yet orders of magnitude higher than other characteristic velocity scales such as either slip or loading velocities. Slow fronts are generated, in conjunction with intersonic fronts, by the sudden arrest of sub-Rayleigh fronts. No overall sliding of the interface occurs until either of the slower two fronts traverses the entire interface, and motion at the leading edge of the interface is initiated. Slip at the trailing edge of the interface accompanies the motion of both the slow and sub-Rayleigh fronts. We might expect these modes to be important in both fault nucleation and earthquake dynamics.Comment: 19 page, 5 figures, to appear in International Journal of Fractur

    Benznidazole biotransformation and multiple targets in <i>Trypanosoma</i> cruzi revealed by metabolomics

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;&lt;p&gt;&lt;/p&gt; The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methodology/Principal findings&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, Îł-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions/significance&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi

    Evidence of altered fatty acid metabolism in dogs with naturally occurring valvular heart disease and congestive heart failure

    Get PDF
    Introduction Myxomatous mitral valve disease (MMVD) is the most common cardiac condition in adult dogs. The disease progresses over several years and affected dogs may develop congestive heart failure (HF). Research has shown that myocardial metabolism is altered in cardiac disease, leading to a reduction in ÎČ-oxidation of fatty acids and an increased dependence upon glycolysis. Objectives This study aimed to evaluate whether a shift in substrate use occurs in canine patients with MMVD; a naturally occurring model of human disease. Methods Client-owned dogs were longitudinally evaluated at a research clinic in London, UK and paired serum samples were selected from visits when patients were in ACVIM stage B1: asymptomatic disease without cardiomegaly, and stage C: HF. Samples were processed using ultra-performance liquid chromatography mass spectrometry and lipid profiles were compared using mixed effects models with false discovery rate adjustment. The effect of disease stage was evaluated with patient breed entered as a confounder. Features that significantly differed were screened for selection for annotation efforts using reference databases. Results Dogs in HF had altered concentrations of lipid species belonging to several classes previously associated with cardiovascular disease. Concentrations of certain acylcarnitines, phospholipids and sphingomyelins were increased after individuals had developed HF, whilst some ceramides and lysophosphatidylcholines decreased. Conclusions The canine metabolome appears to change as MMVD progresses. Findings from this study suggest that in HF myocardial metabolism may be characterised by reduced ÎČ-oxidation. This proposed explanation warrants further research

    Optical Magnetometry

    Get PDF
    Some of the most sensitive methods of measuring magnetic fields utilize interactions of resonant light with atomic vapor. Recent developments in this vibrant field are improving magnetometers in many traditional areas such as measurement of geomagnetic anomalies and magnetic fields in space, and are opening the door to new ones, including, dynamical measurements of bio-magnetic fields, detection of nuclear magnetic resonance (NMR), magnetic-resonance imaging (MRI), inertial-rotation sensing, magnetic microscopy with cold atoms, and tests of fundamental symmetries of Nature.Comment: 11 pages; 4 figures; submitted to Nature Physic

    Recent changes of water discharge and sediment load in the Yellow River basin, China

    Get PDF
    The Yellow River basin contributes approximately 6% of the sediment load from all river systems globally, and the annual runoff directly supports 12% of the Chinese population. As a result, describing and understanding recent variations of water discharge and sediment load under global change scenarios are of considerable importance. The present study considers the annual hydrologic series of the water discharge and sediment load of the Yellow River basin obtained from 15 gauging stations (10 mainstream, 5 tributaries). The Mann-Kendall test method was adopted to detect both gradual and abrupt change of hydrological series since the 1950s. With the exception of the area draining to the Upper Tangnaihai station, results indicate that both water discharge and sediment load have decreased significantly (p&lt;0.05). The declining trend is greater with distance downstream, and drainage area has a significant positive effect on the rate of decline. It is suggested that the abrupt change of the water discharge from the late 1980s to the early 1990s arose from human extraction, and that the abrupt change in sediment load was linked to disturbance from reservoir construction.Geography, PhysicalGeosciences, MultidisciplinarySCI(E)43ARTICLE4541-5613

    Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.

    Get PDF
    BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell
    • 

    corecore