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Abstract
We propose a new extragradient method for solving a multi-valued variational
inequality. It is showed that the method converges globally to a solution of the
multi-valued variational inequality, provided the multi-valued mapping is continuous
with nonempty compact convex values. Preliminary computational experience is also
reported.
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1 Introduction
We consider the following multi-valued variational inequality, denoted by MVI(F ,C): to
find x* ∈ C and ξ ∈ F(x*) such that

〈
ξ , y – x*

〉 ≥ , ∀y ∈ C, (.)

where C is a nonempty closed convex set in R
n, F is a multi-valued mapping from C into

R
n with nonempty values, and 〈·, ·〉 and ‖ · ‖ denote the inner product and the norm inR

n,
respectively.
Extragradient-type algorithms have been extensively studied in the literature; see [–

]. Various algorithms for solving the multi-valued variational inequality have been ex-
tensively studied in the literature [–]. The well-known proximal point algorithm []
requires the multi-valued mapping F to be monotone. [] proposes a projection algo-
rithm for solving the multi-valued variational inequality with a pseudomonotone map-
ping. In [], choosing ui ∈ F(xi) needs solving a single-valued variational inequality; see
the expression (.) in []. [] presents a double projection algorithm, which is an im-
provement of [], so that ui ∈ F(xi) can be taken arbitrarily. In [], however, choosing the
hyperplane needs computing the supremum and hence is computationally expensive. To
overcome this difficulty, [] introduces an extragradient algorithm for solving the multi-
valued variational inequality in which computing the supremum is avoided. In this paper,
we present a new extragradient method for solving the multi-valued variational inequal-
ity. In our method, ui ∈ F(xi) can be taken arbitrarily. Moreover, the main difference of
our method from those of [, , ] is the procedure of Armijo-type linesearch. We also
present numerical tests to compare our Algorithm . with those in [, ].
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This paper is organized as follows. In Section , we present the algorithm details. We
prove the preliminary results for convergence analysis in Section . Numerical results are
reported in the last section.

2 Algorithms
Let us recall the definition of a continuous multi-valued mapping. F is said to be upper
semicontinuous at x ∈ C if for every open setV containing F(x), there is an open setU con-
taining x such that F(y) ⊂ V for all y ∈ C∩U . F is said to be lower semicontinuous at x ∈ C
if given any sequence xk converging to x and any y ∈ F(x), there exists a sequence yk ∈ F(xk)
that converges to y. F is said to be continuous at x ∈ C if it is both upper semicontinuous
and lower semicontinuous at x. If F is single-valued, then both upper semicontinuity and
lower semicontinuity reduce to the continuity of F .
F is called pseudomonotone on C in the sense of Karamardian [] if for any x, y ∈ C,

〈v,x – y〉 ≥  for some v ∈ F(y) ⇒ 〈u,x – y〉 ≥  for all u ∈ F(x). (.)

Let S be the solution set of (.), that is, those points x* ∈ C satisfying (.). Throughout
this paper, we assume that the solution set S of problem (.) is nonempty and F is contin-
uous on C with nonempty compact convex values satisfying the following property:

〈ζ , y – x〉 ≥ , ∀y ∈ C,∀ζ ∈ F(y),∀x ∈ S. (.)

The property (.) holds if F is pseudomonotone on C.
Let PC denote the projector onto C, and let μ >  be a parameter.

Proposition . x ∈ C and ξ ∈ F(x) solve problem (.) if and only if

rμ(x, ξ ) := x – PC(x –μξ ) = .

Algorithm . Choose x ∈ C and two parameters γ ,σ ∈ (, ). Set i = .
Step . Choose ui ∈ F(xi) and let ki be the smallest nonnegative integer satisfying

vi ∈ F
(
PC

(
xi – γ kiui

))
, (.)

γ ki
〈
ui – vi, rγ ki (xi,ui)

〉 ≤ σ
∥∥r

γ ki (xi,ui)
∥∥. (.)

Set ηi = γ ki . If rηi (xi,ui) = , stop.
Step . Compute xi+ := PC(xi – αidi), where

di = rηi (xi,ui) + ηivi, (.)

αi =
( – σ )‖rηi (xi,ui)‖

‖di‖ . (.)

Let i := i +  and go to Step .
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Remark . Let us compare the above algorithmwith those in [, , ]. First, Aimijo-type
linesearch procedures in the four algorithms are different. [, , ] use different proce-
dures which replace (.) by the following ones:

〈
vi, rμ(xi,ui)

〉 ≥ σ
∥∥rμ(xi,ui)∥∥ or

〈
ui – vi, rμ(xi,ui)

〉 ≤ σ
∥∥rμ(xi,ui)∥∥,

whereμ is required to be strictly less than  or /σ , and vi ∈ F(xi–γ ki rμ(xi,ui)). In our algo-
rithm,μ can change according to the value of ηi in each iteration and vi ∈ F(PC(xi–γ kiui)).
Secondly, the way to generate the next iterate is different. In [, ], the next iterate is a pro-
jection of the current iterate onto the intersection of the feasible set C and a hyperplane,
while in our algorithm as well as in [] the next iterate is a projection onto the feasible
set C. In addition, the searching directions in [] and our algorithm are also different.

Lemma. Let C be a closed convex subset ofRn. For any x, y ∈R
n and z ∈ C, the following

statements hold.
(i) 〈x – PC(x), z – PC(x)〉 ≤ .
(ii) ‖PC(x) – PC(y)‖ ≤ ‖x – y‖ – ‖PC(x) – x + y – PC(y)‖.

Proof See []. �

The proof of the following lemma is easy and we omit it (see Lemma . in [] for
example).

Lemma . For any x ∈R
n, ξ ∈ F(x) and μ > ,

min{,μ}∥∥r(x, ξ )∥∥ ≤ ∥∥rμ(x, ξ )∥∥ ≤ max{,μ}∥∥r(x, ξ )∥∥.
We first show that Algorithm . is well defined.

Proposition . If xi is not a solution of problem (.), then there exists a nonnegative
integer ki satisfying (.) and (.).

Proof Suppose that for all k and all v ∈ F(PC(xi – γ kui)), we have

γ k 〈ui – v, rγ k (xi,ui)
〉
> σ

∥∥rγ k (xi,ui)
∥∥,

and hence,

γ k‖ui – v‖ > σ
∥∥rγ k (xi,ui)

∥∥.
Therefore,

‖ui – v‖ > σ

γ k

∥∥rγ k (xi,ui)
∥∥

≥ σ

γ k min
{
,γ k}∥∥r(xi,ui)∥∥

= σ
∥∥r(xi,ui)∥∥, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/218


Fang et al. Journal of Inequalities and Applications 2013, 2013:218 Page 4 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/218

where the second inequality follows from Lemma . and the equality follows from γ ∈
(, ) and k ≥ . Since PC(·) is continuous and xi ∈ C, PC(xi – γ kui) → xi(k → ∞). Since F
is lower semicontinuous, ui ∈ F(xi) and PC(xi–γ kui) → xi(k → ∞), there is vk ∈ F(PC(xi–
γ kui)) such that vk → ui(k → ∞). Therefore,

‖ui – vk‖ > σ
∥∥r(xi,ui)∥∥, ∀k. (.)

Let k → ∞ in (.), we have

 = ‖ui – ui‖ ≥ σ
∥∥r(xi,ui)∥∥ > .

This contradiction completes the proof. �

3 Main results
Nowwe obtain the following auxiliary result that will be used for proving the convergence
of Algorithm ..

Theorem . If the assumption (.) holds and xi /∈ S, then for any x* ∈ S,

〈
di,xi – x*

〉 ≥ ( – σ )
∥∥rηi (xi, ξi)∥∥ > . (.)

Proof Let x* ∈ S. Since ui ∈ F(xi) and ηi > , it follows from (.) that

〈
ηiui,xi – x*

〉 ≥ . (.)

Similarly, we have

〈
ηivi,PC(xi – ηiui) – x*

〉 ≥ , (.)

because vi ∈ F(PC(xi – ηiui)). Since x* ∈ C, from Lemma .(i) we have

〈
xi – ηiui – PC(xi – ηiui),PC(xi – ηiui) – x*

〉 ≥ . (.)

It follows from (.), (.) and (.) that

〈
di,xi – x*

〉
=

〈
rηi (xi,ui) + ηivi,xi – x*

〉
=

〈
rηi (xi,ui) + ηi(vi – ui),xi – x*

〉
+

〈
ηiui,xi – x*

〉
≥ 〈

rηi (xi,ui) + ηi(vi – ui),xi – x*
〉

=
〈
rηi (xi,ui) + ηi(vi – ui), rηi (xi,ui)

〉
+

〈
xi – ηiui – PC(xi – ηiui),PC(xi – ηiui) – x*

〉
+

〈
ηivi,PC(xi – ηiui) – x*

〉
≥ 〈

rηi (xi,ui) + ηi(vi – ui), rηi (xi,ui)
〉
. (.)
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Therefore,

〈
di,xi – x*

〉 ≥ 〈
rηi (xi,ui) + ηi(vi – ui), rηi (xi,ui)

〉
=

∥∥rηi (xi,ui)∥∥ – ηi
〈
ui – vi, rηi (xi,ui)

〉
≥ ∥∥rηi (xi,ui)∥∥ – σ

∥∥rηi (xi,ui)∥∥

= ( – σ )
∥∥rηi (xi,ui)∥∥, (.)

where the second inequality follows from (.). This completes the proof. �

Theorem. If F : C → Rn is continuouswith nonempty compact convex values onC and
the assumption (.) holds, then the sequence {xi} generated by Algorithm . converges to
a solution x of (.).

Proof Let x* ∈ S. It follows from Lemma .(ii), Lemma ., (.), (.) and (.) that

∥∥xi+ – x*
∥∥ ≤ ∥∥xi – x* – αidi

∥∥

=
∥∥xi – x*

∥∥ – αi
〈
di,xi – x*

〉
+ α

i ‖di‖

≤ ∥∥xi – x*
∥∥ –

( – σ )‖rηi (xi,ui)‖
‖di‖

≤ ∥∥xi – x*
∥∥ –

( – σ )(min{ηi, }‖r(xi,ui)‖)
‖di‖

=
∥∥xi – x*

∥∥ –
( – σ )η

i ‖r(xi,ui)‖
‖rηi (xi,ui) + ηivi‖ . (.)

It follows that the sequence {‖xi+ – x*‖} is nonincreasing, and hence is a convergent se-
quence. Therefore, {xi} is bounded. Since F is continuous with compact values, Proposi-
tion . in [] implies that {F(xi) : i ∈ N} is a bounded set, and so are {ui}, {rηi (xi,ui)} and
{vi}. Thus, {rηi (xi,ui) + ηivi} is bounded. Then there exists a positive numberM such that

∥∥rηi (xi,ui) + ηivi
∥∥ ≤ M.

It follows from (.) that

∥∥xi+ – x*
∥∥ ≤ ∥∥xi – x*

∥∥ – ( – σ )M–η
i
∥∥r(xi,ui)∥∥. (.)

Therefore,

lim
i→∞ηi

∥∥r(xi,ui)∥∥ = . (.)

By the boundedness of {xi}, there exists a convergent subsequence {xij} converging to x.
If x is a solution of problem (.), we show next that the whole sequence {xi} converges

to x. Replacing x* by x in the preceding argument, we obtain that the sequence {‖xi –
x‖} is nonincreasing and hence converges. Since x is an accumulation point of {xi}, some

http://www.journalofinequalitiesandapplications.com/content/2013/1/218
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subsequence of {‖xi–x‖} converges to zero. This shows that the whole sequence {‖xi–x‖}
converges to zero, hence limi→∞ xi = x.
Suppose now that x is not a solution of problem (.). We show first that ki in Algo-

rithm . cannot tend to ∞. Since F is continuous with compact values, Proposition .
in [] implies that {F(xi) : i ∈ N} is a bounded set, and so the sequence {ui} is bounded.
Therefore, there exists a subsequence {uij} converging to u. Since F is upper semicontin-
uous with compact values, Proposition . in [] implies that F is closed, and so u ∈ F(x).
By the definition of ki, we have

γ ki–
〈
ui – v, r

γ ki– (xi,ui)
〉
> σ

∥∥r
γ ki– (xi,ui)

∥∥, ∀v ∈ F
(
PC

(
xi – γ ki–ui

))
, (.)

and hence

γ ki–‖ui – v‖ > σ
∥∥r

γ ki– (xi,ui)
∥∥, ∀v ∈ F

(
PC

(
xi – γ ki–ui

))
. (.)

Therefore,

‖ui – v‖ > σ

γ ki–

∥∥r
γ ki– (xi,ui)

∥∥
≥ σ

γ ki–
min

{
,γ ki–

}∥∥r(xi,ui)∥∥
= σ

∥∥r(xi,ui)∥∥, ∀v ∈ F
(
PC

(
xi – γ ki–ui

))
,∀ki ≥ , (.)

where the second inequality follows from Lemma . and the equality follows from γ ∈
(, ).
If kij → ∞, then PC(xij – γ

kij–uij ) → x. The lower continuity of F , in turn, implies the
existence of uij ∈ F(PC(xij – γ

kij–uij )) such that uij converges to u. Therefore,

‖uij – uij‖ > σ
∥∥r(xij ,uij )∥∥. (.)

Letting j → ∞, we obtain the contradiction

 ≥ σ
∥∥r(x,u)∥∥ > , (.)

being r(·, ·) continuous. Therefore, {ki} is bounded and so is {ηi}.
By the boundedness of {ηi}, it follows from (.) that limi→∞ ‖r(xi,ui)‖ = . Since r(·, ·)

is continuous and the sequences {xi} and {ui} are bounded, there exists an accumulation
point (x,u) of {(xi,ui)} such that r(x,u) = . This implies that x solves the variational in-
equality (.). Similar to the preceding proof, we obtain that limi→∞ xi = x.
Now we provide a result on the convergence rate of the iterative sequence generated

by Algorithm .. To establish this result, we need a certain error bound to hold locally
(see (.) below). The research on an error bound is a large topic in mathematical pro-
gramming. One can refer to the survey [] for the roles played by error bounds in the
convergence analysis of iterative algorithms; more recent developments on this topic are
included in Chapter  in []. A condition similar to (.) has also been used in [] (see
expression () therein) to analyze the convergence rate in a very general framework.

http://www.journalofinequalitiesandapplications.com/content/2013/1/218
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For any δ > , define

P(δ) :=
{
(x, ξ ) ∈ C ×R

n : ξ ∈ F(x),
∥∥r(x, ξ )∥∥ ≤ δ

}
.

We say that F is Lipschitz continuous on C if there exists a constant L >  such that, for
all x, y ∈ C, H(F(x),F(y))≤ L‖x – y‖, where H denotes the Hausdorff metric. �

Theorem . In addition to the assumptions in Theorem ., if F is Lipschitz continuous
with modulus L >  and if there exist positive constants c and δ such that

dist(x,S)≤ c
∥∥r(x, ξ )∥∥, ∀(x, ξ ) ∈ P(δ), (.)

then there is a constant α >  such that for sufficiently large i,

dist(xi,S)≤ √
αi + dist–(x,S)

.

Proof Put η :=min{/,L–γ σ }. We first prove that ηi > η for all i. By the construction of
ηi, we have ηi ∈ (, ]. If ηi = , then clearly ηi > 

 ≥ η. Now we assume that ηi < . Since
ηi = γ ki , it follows that the nonnegative integer ki ≥ . Thus the construction of ki implies
that

γ ki–
〈
ui – v, r

γ ki– (xi,ui)
〉
> σ

∥∥r
γ ki– (xi,ui)

∥∥, ∀v ∈ F
(
PC

(
xi – γ ki–ui

))
, (.)

and hence, as ki ≥ ,

‖ui – v‖ > σ

γ ki–

∥∥r
γ ki– (xi,ui)

∥∥, ∀v ∈ F
(
PC

(
xi – γ ki–ui

))
.

Since ui ∈ F(xi) and F is compact-valued, the definition of the Hausdorff metric implies
the existence of vi ∈ F(PC(xi – γ ki–ui)) such that

σ

γ ki–

∥∥r
γ ki– (xi,ui)

∥∥ < ‖ui – vi‖ ≤ H
(
F(xi),F

(
PC

(
xi – γ ki–ui

))) ≤ L
∥∥r

γ ki– (xi,ui)
∥∥.

Therefore ηi > L–γ σ ≥ η.
Let x* ∈ PS(xi). By (.) and (.), we obtain that for sufficiently large i,

dist(xi+,S)≤
∥∥xi+ – x*

∥∥

≤ ∥∥xi – x*
∥∥ – ( – σ )M–η

i
∥∥r(xi,ui)∥∥

≤ ∥∥xi – x*
∥∥ – ( – σ )M–η∥∥r(xi,ui)∥∥

≤ dist(xi,S) – ( – σ )M–ηc– dist(xi,S),

where the second inequality follows from ηi > η.
Write α for ( – σ )M–ηc–. Applying Lemma  in Chapter  of [], we have

dist(xi,S)≤ dist(x,S)/
√

αidist(x,S) +  = /
√

αi + dist–(x,S).

This completes the proof. �
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Table 1 Example 4.1

ε Algorithm 2.2 [6, Algorithm 1]

It. (Num.) CPU (Sec.) It. (Num.) CPU (Sec.)

10–3 38 0.640625 67 0.546875
10–5 66 0.8125 120 0.828125
10–7 96 1.10938 173 1.15625

Table 2 Example 4.1

ε Algorithm 2.2 [11, Algorithm 1]

It. (Num.) CPU (Sec.) It. (Num.) CPU (Sec.)

10–3 38 0.640625 71 0.96875
10–5 66 0.8125 126 1.53125
10–7 96 1.10938 181 2.14063

4 Numerical experiments
In this section, we present some numerical experiments for the proposed algorithm. The
MATLAB codes are run on a PC (with CPU Intel P-T) under MATLAB Version
...(R) Service Pack . We compare the performance of our Algorithm ., [,
Algorithm ] and [, Algorithm ]. In Tables  and , ‘It.’ denotes the number of iteration
and ‘CPU’ denotes the CPU time in seconds. The tolerance ε means when ‖rμ(x, ξ )‖ ≤ ε,
the procedure stops.

Example . Let n = ,

C :=

{
x ∈R

n
+ :

n∑
i=

xi = 

}

and F : C → Rn be defined by

F(x) :=
{
(t, t – x, t – x) : t ∈ [, ]

}
.

Then the set C and the mapping F satisfy the assumptions of Theorem . and (, , ) is
a solution of the multi-valued variational inequality. Example . is tested in [, ]. We
choose σ = ., γ = . for our algorithm; σ = ., γ = ., μ =  for Algorithm  in [];
σ = ., γ = ., μ =  for Algorithm  in []. We use x = (, ., .) as the initial point
(Table  and Table ).
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