13 research outputs found

    Lattice oxygen self-spillover on reducible oxide supported metal cluster: The water-gas shift reaction on Cu/CeO2catalyst

    Get PDF
    In this work we have tackled one of the most challenging problems in nanocatalysis namely understanding the role of reducible oxide supports in metal catalyzed reactions. As a prototypical example, the very well-studied water gas shift reaction catalyzed by CeO2supported Cu nanoclusters is chosen to probe how the reducible oxide support modifies the catalyst structures, catalytically active sites and even the reaction mechanisms. By employing density functional theory calculations in conjunction with a genetic algorithm andab initiomolecular dynamics simulations, we have identified an unprecedented spillover of the surface lattice oxygen from the ceria support to the Cu cluster, which is rarely considered previously but may widely exist in oxide supported metal catalysts under realistic conditions. The oxygen spillover causes a highly energetic preference of the monolayered configuration of the supported Cu nanocluster, compared to multilayered configurations. Due to the strong metal-oxide interaction, after the O spillover the monolayered cluster is highly oxidized by transferring electrons to the Ce 4f orbitals. The water-gas-shift reaction is further found to more favorably take place on the supported copper monolayer than the copper-ceria periphery, where the on-site oxygen and the adjacent oxidized Cu sites account for the catalytically active sites, synergistically facilitating the water dissociation and the carboxyl formation. The present work provides mechanistic insights into the strong metal-support interaction and its role in catalytic reactions, which may pave a way towards the rational design of metal-oxide catalysts with promising stability, dispersion and catalytic activity

    Hierarchically structured Pt/CNT@TiO2 nanocatalysts with ultrahigh stability for low-temperature fuel cells

    No full text
    High-stability Pt electrocatalysts have been prepared using hierarchical CNT@TiO2 structures composed of TiO2 nanosheets grafted on the CNT backbone as the support. The as-prepared Pt/CNT@TiO2 electrocatalysts manifest high electrocatalytic activity with greatly improved stability compared to conventional CNT or carbon black supported Pt electrocatalysts

    Plasma-catalytic pyrolysis of polypropylene for hydrogen and carbon nanotubes: Understanding the influence of plasma on volatiles

    Get PDF
    Plasma-catalytic pyrolysis was developed for upgrading polypropylene (PP) pyrolysis volatiles to co-produce carbon nanotubes (CNTs) and hydrogen. To uncover the role of plasma on the plastic catalytic pyrolysis process, the pyrolysis of polypropylene (PP) over Fe/γ-Al2O3 was carried out in a two-stage pyrolysis system with a coaxial dielectric barrier discharge (DBD) plasma reactor. The results showed that the plastic pyrolysis volatiles were further cleaved and activated with plasma, resulting in more active carbon species for the growth of CNTs. Compared to conventional catalytic pyrolysis, plasma addition shifted the initial formation temperature of CNTs to a lower ambient temperature by ∼100 °C, and significantly promoted the conversion of liquid and gaseous products to CNTs and hydrogen, with higher carbon and hydrogen yields of ∼322 mg/gplastic and 30 mmol/gplastic, respectively. In addition, the degree of graphitization of the CNTs in the presence of the plasma was significantly enhanced with less defectivity. The influence of catalytic temperature variation caused by plasma on CNTs growth was also discussed from the perspective of volatile evolution. This work highlights the potential of plasma-catalytic pyrolysis for the production of hydrogen and high-value carbon materials from plastic waste
    corecore