11 research outputs found

    Postconditioning inhibits myocardial apoptosis during prolonged reperfusion via a JAK2-STAT3-Bcl-2 pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Postconditioning (PostC) inhibits myocardial apoptosis after ischemia-reperfusion (I/R) injury. The JAK2-STAT3 pathway has anti-apoptotic effects and plays an essential role in the late protection of preconditioning. Our aim was to investigate the anti-apoptotic effect of PostC after prolonged reperfusion and the role of the JAK2-STAT3 pathway in the anti-apoptotic effect of PostC.</p> <p>Methods</p> <p>Wistar rats were subjected to 30 minutes ischemia and 2 or 24 hours (h) reperfusion, with or without PostC (three cycles of 10 seconds reperfusion and 10 seconds reocclusion at the onset of reperfusion). Separate groups of rats were treated with a JAK2 inhibitor (AG490) or a PI3K inhibitor (wortmannin) 5 minutes before PostC. Immunohistochemistry was used to analyze Bcl-2 protein levels after reperfusion. mRNA levels of Bcl-2 were detected by qRT-PCR. TTC staining was used to detect myocardial infarction size. Myocardial apoptosis was evaluated by TUNEL staining. Western-blot was used to detect p-STAT3 and p-Akt levels after reperfusion.</p> <p>Results</p> <p>There was more myocardial apoptosis at 24 h <it>vs </it>2 h after reperfusion in all groups. PostC significantly reduced myocardial apoptosis and elevated Bcl-2 levels at both 2 and 24 hours after reperfusion. PostC increased p-STAT3 and p-Akt levels after reperfusion. Administration of AG490 reduced p-STAT3 and p-Akt levels and attenuated the anti-apoptotic effect of PostC. Wortmannin also reduced p-Akt levels and attenuated the anti-apoptotic effect of PostC but had no effect on p-STAT3 levels. AG490 abrogated the up-regulation of Bcl-2 by PostC.</p> <p>Conclusion</p> <p>PostC may reduce myocardial apoptosis during prolonged reperfusion via a JAK2-STAT3-Bcl-2 pathway. As a downstream target of JAK2 signaling, activation of PI3K/Akt pathway may be necessary in the protection of PostC.</p

    Superior mesenteric artery embolism after radiofrequency ablation in regularly anticoagulated patients with paroxysmal atrial fibrillation: a case report

    No full text
    Abstract Background Superior mesenteric artery embolism (SMAE) is a rare cause of acute abdomen, and the fatality rate is extremely high if it is not diagnosed and treated in time. Due to the lack of knowledge and experience of nonspecialist physicians, it is easy to misdiagnose. Radiofrequency ablation (RFA) has become the first-line treatment strategy for atrial fibrillation (AF). Thromboembolic events are some of the major complications after RFA, whereas SMAE is rarely reported. Case presentation A 70 year-old woman with paroxysmal AF who regularly took anticoagulant drugs for 3 months experienced abdominal pain after RFA. At the outset, she was misdiagnosed as mechanical intestinal obstruction. When the patient presented with blood in the stool, abdominal enhancement computed tomography was conducted and showed a small bowel perforation. Immediate laparotomy was performed, and the final diagnosis was SMAE. Conclusion It is suggested that for unexplained abdominal pain after RFA of AF, the possibility of SMAE should be considered, and a targeted examination should be carried out in time to confirm the diagnosis and give appropriate treatment

    Mechanical and Dynamic Mechanical Properties of the Amino Silicone Oil Emulsion Modified Ramie Fiber Reinforced Composites

    No full text
    The mechanical and dynamic mechanical properties, interface adhesion and microstructures of the amino silicone oil emulsion (ASO) modified short ramie fiber reinforced polypropylene composites (RFPCs) with different fiber fractions were investigated. The RFPCs were made through a combined process of extrusion and injection molding. Mechanical property tests of the RFPCs revealed enhancements in tensile and flexural strengths with increase of the fiber fraction due to the high stiffness of the fiber filler and a better interfacial bonding from ASO treatment. The dynamic mechanical analysis (DMA) results indicated that fiber incorporation plays an important role in DMA parameters (storage modulus, loss modulus, and damping ratio) at Tg by forming an improved interfacial adhesion and providing more effective stress transfer rate and energy dissipation between matrix and fiber. The phase behavior analysis suggests all the RFPCs are a kind of heterogeneity system based on the Cole-Cole plot analysis

    Osimertinib induces paraptosis and TRIP13 confers resistance in glioblastoma cells

    No full text
    Abstract The efficacy of osimertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor, has been evaluated in glioblastoma (GBM) through preclinical and clinical trials. However, the underlying mechanism of osimertinib-induced GBM cell death and the underlying resistance mechanism to osimertinib remains unclear. Here, we demonstrate that Osimertinib induces paraptosis in GBM cells, as evidenced by the formation of cytoplasmic vacuoles, accumulation of ubiquitinated proteins, and upregulation of endoplasmic reticulum (ER) stress markers like CHOP. Additionally, neither apoptosis nor autophagy was involved in the osimertinib-induced cell death. RNAseq analysis revealed ER stress was the most significantly downregulated pathway upon exposure to osimertinib. Consistently, pharmacologically targeting the PERK-eIF2α axis impaired osimertinib-induced paraptosis. Notably, we show that the expression of thyroid receptor-interacting protein 13 (TRIP13), an AAA+ATPase, alleviated osimertinib-triggered paraptosis, thus conferring resistance. Intriguingly, MK-2206, an AKT inhibitor, downregulated TRIP13 levels and synergized with Osimertinib to suppress TRIP13-induced high GBM cell growth in vitro and in vivo. Together, our findings reveal a novel mechanism of action associated with the anti-GBM effects of osimertinib involving ER stress-regulated paraptosis. Furthermore, we identify a TRIP13-driven resistance mechanism against Osimertinib in GBM and offer a combination strategy using MK-2206 to overcome such resistance

    Single‐Cell Analysis Reveals Malignant Cells Reshape the Cellular Landscape and Foster an Immunosuppressive Microenvironment of Extranodal NK/T‐Cell Lymphoma

    No full text
    Abstract Extranodal natural killer/T‐cell lymphoma (NKTCL) is an aggressive type of lymphoma associated with Epstein–Barr virus (EBV) and characterized by heterogeneous tumor behaviors. To better understand the origins of the heterogeneity, this study utilizes single‐cell RNA sequencing (scRNA‐seq) analysis to profile the tumor microenvironment (TME) of NKTCL at the single‐cell level. Together with in vitro and in vivo models, the study identifies a subset of LMP1+ malignant NK cells contributing to the tumorigenesis and development of heterogeneous malignant cells in NKTCL. Furthermore, malignant NK cells interact with various immunocytes via chemokines and their receptors, secrete substantial DPP4 that impairs the chemotaxis of immunocytes and regulates their infiltration. They also exhibit an immunosuppressive effect on T cells, which is further boosted by LMP1. Moreover, high transcription of EBV‐encoded genes and low infiltration of tumor‐associated macrophages (TAMs) are favorable prognostic indicators for NKTCL in multiple patient cohorts. This study for the first time deciphers the heterogeneous composition of NKTCL TME at single‐cell resolution, highlighting the crucial role of malignant NK cells with EBV‐encoded LMP1 in reshaping the cellular landscape and fostering an immunosuppressive microenvironment. These findings provide insights into understanding the pathogenic mechanisms of NKTCL and developing novel therapeutic strategies against NKTCL

    Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma

    Get PDF
    The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ~3,500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (also known as KDM6A), JARID1C (also known as KDM5C) and SETD2 (ref. 2). These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodelling complex gene PBRM1 (ref. 4) as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology
    corecore