7,286 research outputs found
Dynamical Properties of Multi-Armed Global Spirals in Rayleigh-Benard Convection
Explicit formulas for the rotation frequency and the long-wavenumber
diffusion coefficients of global spirals with arms in Rayleigh-Benard
convection are obtained. Global spirals and parallel rolls share exactly the
same Eckhaus, zigzag and skewed-varicose instability boundaries. Global spirals
seem not to have a characteristic frequency or a typical size ,
but their product is a constant under given experimental
conditions. The ratio of the radii of any two dislocations (,
) inside a multi-armed spiral is also predicted to be constant. Some of
these results have been tested by our numerical work.Comment: To appear in Phys. Rev. E as Rapid Communication
Quantum computation with Josephson-qubits by using a current-biased information bus
We propose an effective scheme for manipulating quantum information stored in
a superconducting nanocircuit. The Josephson qubits are coupled via their
separate interactions with an information bus, a large current-biased Josephson
junction treated as an oscillator with adjustable frequency. The bus is
sequentially coupled to only one qubit at a time. Distant Josephson qubits
without any direct interaction can be indirectly coupled with each other by
independently interacting with the bus sequentially, via exciting/de-exciting
vibrational quanta in the bus. This is a superconducting analog of the
successful ion trap experiments on quantum computing. Our approach differs from
previous schemes that simultaneously coupled two qubits to the bus, as opposed
to their sequential coupling considered here. The significant quantum logic
gates can be realized by using these tunable and selective couplings. The
decoherence properties of the proposed quantum system are analyzed within the
Bloch-Redfield formalism. Numerical estimations of certain important
experimental parameters are provided.Comment: 13 pages with 2 figures. submitte
Microscopic Modeling of the Growth of Order in an Alloy: Nucleated and Continuous Ordering
We study the early-stages of ordering in using a model Hamiltonian
derived from the effective medium theory of cohesion in metals: an approach
providing a microscopic description of interatomic interactions in alloys. Our
simulations show a crossover from a nucleated growth regime to a region where
the ordering does not follow any simple growth laws. This mirrors the
experimental observations in . The kinetics of growth, obtained from
the simulations, is in semi-quantitative agreement with experiments. The
real-space structures observed in our simulations offer some insight into the
nature of early-stage kineticsComment: 13 pages, Revtex, 3 postscript figures in a second file
Effect of the Output of the System in Signal Detection
We analyze the consequences that the choice of the output of the system has
in the efficiency of signal detection. It is shown that the signal and the
signal-to-noise ratio (SNR), used to characterize the phenomenon of stochastic
resonance, strongly depend on the form of the output. In particular, the SNR
may be enhanced for an adequate output.Comment: 4 pages, RevTex, 6 PostScript figure
Finding the Origin of the Pioneer Anomaly
Analysis of radio-metric tracking data from the Pioneer 10/11 spacecraft at
distances between 20 - 70 astronomical units (AU) from the Sun has consistently
indicated the presence of an anomalous, small, constant Doppler frequency
drift. The drift can be interpreted as being due to a constant acceleration of
a_P= (8.74 \pm 1.33) x 10^{-8} cm/s^2 directed towards the Sun. Although it is
suspected that there is a systematic origin to the effect, none has been found.
As a result, the nature of this anomaly has become of growing interest. Here we
present a concept for a deep-space experiment that will reveal the origin of
the discovered anomaly and also will characterize its properties to an accuracy
of at least two orders of magnitude below the anomaly's size. The proposed
mission will not only provide a significant accuracy improvement in the search
for small anomalous accelerations, it will also determine if the anomaly is due
to some internal systematic or has an external origin. A number of critical
requirements and design considerations for the mission are outlined and
addressed. If only already existing technologies were used, the mission could
be flown as early as 2010.Comment: 21 SS pages, 4+1 figures. final changes for publicatio
Metallicity determination in gas-rich galaxies with semiempirical methods
A study of the precision of the semiempirical methods used in the
determination of the chemical abundances in gas-rich galaxies is carried out.
In order to do this the oxygen abundances of a total of 438 galaxies were
determined using the electronic temperature, the and the P methods.
The new calibration of the P method gives the smaller dispersion for the low
and high metallicity regions, while the best numbers in the turnaround region
are given by the method. We also found that the dispersion correlates
with the metallicity. Finally, it can be said that all the semiempirical
methods studied here are quite insensitive to metallicity with a value of
dex for more than 50% of the total sample.
\keywords{ISM: abundances; (ISM): H {\sc ii} regions}Comment: 26 pages, 9 figures and 2 tables. To appear at AJ, January 200
Quantum Criticality of 1D Attractive Fermi Gas
We obtain an analytical equation of state for one-dimensional strongly
attractive Fermi gas for all parameter regime in current experiments. From the
equation of state we derive universal scaling functions that control whole
thermodynamical properties in quantum critical regimes and illustrate physical
origin of quantum criticality. It turns out that the critical properties of the
system are described by these of free fermions and those of mixtures of
fermions with mass and . We also show how these critical properties of
bulk systems can be revealed from the density profile of trapped Fermi gas at
finite temperatures and can be used to determine the T=0 phase boundaries
without any arbitrariness.Comment: extended version, 9 pages, 7 eps figures, corrections of few typo
Recommended from our members
Schneefernerhaus as a mountain research station for clouds and turbulence
Cloud measurements are usually carried out with airborne campaigns, which are expensive and are limited by temporal duration and weather conditions. Ground-based measurements at high-altitude research stations therefore play a complementary role in cloud study. Using the meteorological data (wind speed, direction, temperature, humidity, visibility, etc.) collected by the German Weather Service (DWD) from 2000 to 2012 and turbulence measurements recorded by multiple ultrasonic sensors (sampled at 10 Hz) in 2010, we show that the Umweltforschungsstation Schneefernerhaus (UFS) located just below the peak of Zugspitze in the German Alps, at a height of 2650 m, is a well-suited station for cloud–turbulence research. The wind at UFS is dominantly in the east–west direction and nearly horizontal. During the summertime (July and August) the UFS is immersed in warm clouds about 25 % of the time. The clouds are either from convection originating in the valley in the east, or associated with synoptic-scale weather systems typically advected from the west. Air turbulence, as measured from the second- and third-order velocity structure functions that exhibit well-developed inertial ranges, possesses Taylor microscale Reynolds numbers up to 104, with the most probable value at ~ 3000. In spite of the complex topography, the turbulence appears to be nearly as isotropic as many laboratory flows when evaluated on the "Lumley triangle"
- …