
HAL Id: inria-00000200
https://hal.inria.fr/inria-00000200v2

Submitted on 11 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decidability of Type-checking in the Calculus of
Algebraic Constructions with Size Annotations

Frédéric Blanqui

To cite this version:
Frédéric Blanqui. Decidability of Type-checking in the Calculus of Algebraic Constructions with Size
Annotations. 14th Annual Conference of the EACSL, Aug 2005, Oxford, United Kingdom. pp.135–
150, �10.1007/11538363_11�. �inria-00000200v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50434268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00000200v2
https://hal.archives-ouvertes.fr

in
ri

a-
00

00
02

00
, v

er
si

on
 2

 -
 1

1
Se

p
20

06

Deidability of Type-heking in the Calulus ofAlgebrai Construtions with Size AnnotationsFrédéri BlanquiLaboratoire Lorrain de Reherhe en Informatique et Automatique (LORIA)Institut National de Reherhe en Informatique et Automatique (INRIA)615 rue du Jardin Botanique, BP 101, 54602 Villers-lès-Nany, Franeblanqui�loria.frAbstrat. Sine Val Tannen's pioneering work on the ombination ofsimply-typed λ-alulus and �rst-order rewriting [11℄, many authors haveontributed to this subjet by extending it to riher typed λ-aluli andrewriting paradigms, ulminating in the Calulus of Algebrai Constru-tions. These works provide theoretial foundations for type-theoretiproof assistants where funtions and prediates are de�ned by orientedhigher-order equations. This kind of de�nitions subsumes usual indutivede�nitions, is easier to write and provides more automation.On the other hand, heking that suh user-de�ned rewrite rules, whenombined with β-redution, are strongly normalizing and on�uent, andpreserve the deidability of type-heking, is more di�ult. Most ter-mination riteria rely on the term struture. In a previous work, weextended to dependent types and higher-order rewriting, the notion of�sized types� studied by several authors in the simpler framework of ML-like languages, and proved that it preserves strong normalization.The main ontribution of the present paper is twofold. First, we provethat, in the Calulus of Algebrai Construtions with size annotations,the problems of type inferene and type-heking are deidable, providedthat the sets of onstraints generated by size annotations are satis�ableand admit most general solutions. Seond, we prove the latter proper-ties for a size algebra rih enough for apturing usual indution-basedde�nitions and muh more.1 IntrodutionThe notion of �sized type� was �rst introdued in [21℄ and further studied byseveral authors [20, 3, 1, 31℄ as a tool for proving the termination of ML-likefuntion de�nitions. It is based on the semantis of indutive types as �xpointsof monotone operators, reahable by trans�nite iteration. For instane, naturalnumbers are the limit of (Si)i<ω , where Si is the set of natural numbers smallerthan i (indutive types with onstrutors having funtional arguments requireordinals bigger than ω). The idea is then to re�et this in the syntax by addingsize annotations on types indiating in whih subset Si a term is. For instane,subtration on natural numbers an be assigned the type − : natα ⇒ natβ ⇒
natα, where α and β are impliitly universally quanti�ed, meaning that the size

of its output is not bigger than the size of its �rst argument. Then, one anensure termination by restriting reursive alls to arguments whose size � bytyping � is smaller. For instane, the following ML-like de�nition of ⌈ x
y+1⌉:letre div x y = math x with| O -> O| S x' -> S (div (x' - y) y)is terminating sine, if x is of size at most α and y is of size at most β, then x′is of size at most α− 1 and (x′ − y) is of size at most α− 1 < α.The Calulus of Construtions (CC) [17℄ is a powerful type system withpolymorphi and dependent types, allowing to enode higher-order logi. TheCalulus of Algebrai Construtions (CAC) [8℄ is an extension of CC where fun-tions are de�ned by higher-order rewrite rules. As shown in [10℄, it subsumes theCalulus of Indutive Construtions (CIC) [18℄ implemented in the Coq proofassistant [15℄, where funtions are de�ned by indution. Using rule-based def-initions has numerous advantages over indution-based de�nitions: de�nitionsare easier (e.g. Akermann's funtion), more propositions an be proved equiv-alent automatially, one an add simpli�ation rules like assoiativity or usingrewriting modulo AC [6℄, et. For proving that user-de�ned rules terminate whenombined with β-redution, [8℄ essentially heks that reursive alls are madeon struturally smaller arguments.In [7℄, we extended the notion of sized type to CAC, giving the Calulus ofAlgebrai Construtions with Size Annotations (CACSA). We proved that, whenombined with β-redution, user-de�ned rules terminate essentially if reursivealls are made on arguments whose size � by typing � is stritly smaller, bypossibly using lexiographi and multiset omparisons. Hene, the following rule-based de�nition of ⌈ x

y+1⌉:
0 / y → 0

(s x) / y → s ((x − y) / y)is terminating sine, in the last rule, if x is of size at most α and y is of sizeat most β, then (s x) is of size at most α + 1 and (x − y) is of size at most
α < α + 1. Note that this rewrite system annot be proved terminating byriteria only based on the term struture, like RPO or its extensions to higher-order terms [22, 29℄. Note also that, if a term t is struturally smaller than a term
u, then the size of t is smaller than the size of u. Therefore, CACSA proves thetermination of any indution-based de�nition like CIC/Coq, but also de�nitionslike the previous one. To our knowledge, this is the most powerful terminationriterion for funtions with polymorphi and dependent types like in Coq. Thereader an �nd other onvining examples in [7℄.However, [7℄ left an important question open. For the termination riterion towork, we need to make sure that size annotations assigned to funtion symbolsare valid. For instane, if subtration is assigned the type − : natα ⇒ natβ ⇒
natα, then we must make sure that the de�nition of − indeed outputs a termwhose size is not greater than the size of its �rst argument. This amounts to

hek that, for every rule in the de�nition of −, the size of the right hand-sideis not greater than the size of the left hand-side. This an be easily veri�ed byhand if, for instane, the de�nition of − is as follows:
0 − x → 0
x − 0 → x

(s x) − (s y) → x − yThe purpose of the present work is to prove that this an be done automat-ially, by inferring the size of both the left and right hand-sides, and hekingthat the former is smaller than the latter.Fig. 1. Insertion sort on polymorphi and dependent lists
nil : (A : ⋆)listαA 0

cons : (A : ⋆)A ⇒ (n : nat)listαA n ⇒ listsαA (sn)
if_in_then_else : bool ⇒ (A : ⋆)A ⇒ A ⇒ A

insert : (A : ⋆)(≤: A ⇒ A ⇒ bool)A ⇒ (n : nat)listαA n ⇒ listsαA (sn)
sort : (A : ⋆)(≤: A ⇒ A ⇒ bool)(n : nat)listαA n ⇒ listαA n

if true in A then u else v → u
if false in A then u else v → v
insert A ≤ x _ (nil _) → cons A x 0 (nil A)

insert A ≤ x _ (cons _ y n l) → if x ≤ y in list A (s (s n))
then cons A x (s n) (cons A y n l)
else cons A y (s n) (insert A ≤ x n l)

sort A ≤ _ (nil _) → nil A
sort A ≤ _ (cons _ x n l) → insert A ≤ x n (sort A ≤ n l)We now give an example with dependent and polymorphi types. Let ⋆ bethe sort of types and list : ⋆⇒ nat⇒ ⋆ be the type of polymorphi lists of �xedlength whose onstrutors are nil and cons. Without ambiguity, s is used for thesuessor funtion both on terms and on size expressions. The funtions insertand sort de�ned in Figure 1 have size annotations satisfying our terminationriterion. The point is that sort preserves the size of its list argument and thusan be safely used in reursive alls. Cheking this automatially is the goal ofthis work.An important point is that the ordering naturally assoiated with size anno-tations implies some subtyping relation on types. The ombination of subtypingand dependent types (without rewriting) is a di�ult subjet whih has beenstudied by Chen [12℄. We reused many ideas and tehniques of his work fordesigning CACSA and proving important properties like β-subjet redution(preservation of typing under β-redution) [5℄.Another important point is related to the meaning of type inferene. In ML,type inferene means omputing a type of a term in whih the types of free andbound variables, and funtion symbols (letre's in ML), are unknown. In otherwords, it onsists in �nding a simple type for a pure λ-term. Here, type inferenemeans omputing a CACSA type, hene dependent and polymorphi (CACSA

ontains Girard's system F), of a term in whih the types and size annotations offree and bound variables, and funtion symbols, are known. In dependent typetheories, this kind of type inferene is neessary for type-heking [16℄. In otherwords, we do not try to infer relations between the sizes of the arguments of afuntion and the size of its output like in [13, 4℄. We try to hek that, with theannotated types delared by the user for its funtion symbols, rules satisfy thetermination riterion desribed in [7℄.Moreover, in ML, type inferene amounts to solve equality onstraints inthe type algebra. Here, type inferene amounts to solve equality and orderingonstraints in the size algebra. The point is that the ordering on size expressionsis not anti-symmetri: it is a quasi-ordering. Thus, we have a ombination ofuni�ation and symboli quasi-ordering onstraint solving.Finally, beause of the ombination of subtyping and dependent typing, thedeidability of type-heking requires the existene of minimal types [12℄. Thus,we must also prove that a satis�able set of equality and ordering onstraints hasa smallest solution, whih is not the ase in general. This is in ontrast withnon-dependently typed frameworks.Outline. In Setion 2, we de�ne terms and types, and study some propertiesof the size ordering. In Setion 3, we give a general type inferene algorithm andprove its orretness and ompleteness under general assumptions on onstraintsolving. Finally, in Setion 4, we prove that these assumptions are ful�lled for thesize algebra introdued in [3℄ whih, although simple, is rih enough for apturingusual indutive de�nitions and muh more, as shown by the �rst example above.Missing proofs are given in [9℄.2 Terms and typesSize algebra. Indutive types are annotated by size expressions from the fol-lowing algebra A:
a ::= α | sa | ∞where α ∈ Z is a size variable. The set A is equipped with the quasi-ordering

≤A de�ned in Figure 2. Let ≃A = ≤A ∩ ≥A be its assoiated equivalene.Let ϕ, ψ, ρ, . . . denote size substitutions, i.e. funtions from Z to A. One aneasily hek that ≤A is stable by substitution: if a ≤A b then aϕ ≤A bϕ. Weextend ≤A to substitutions: ϕ ≤A ψ i�, for all α ∈ Z, αϕ ≤A αψ.We also extend the notion of �more general substitution� from uni�ationtheory as follows: ϕ is more general than ψ, written ϕ ⊑ ψ, i� there is ϕ′ suhthat ϕϕ′ ≤A ψ.Terms.We assume the reader familiar with typed λ-aluli [2℄ and rewriting[19℄. Details on CAC(SA) an be found in [8, 7℄. We assume given a set S = {⋆,2}of sorts (⋆ is the sort of types and propositions; 2 is the sort of prediate types),a set F of funtion or prediate symbols, a set CF2 ⊆ F of onstant prediatesymbols, and an in�nite set X of term variables. The set T of terms is:

Fig. 2. Ordering on size expressions(re�) a ≤A a (trans) a ≤A b b ≤A c

a ≤A c(mon) a ≤A b

sa ≤A sb
(su) a ≤A b

a ≤A sb
(infty) a ≤A ∞

t ::= s | x | Ca | f | [x : t]t | (x : t)t | ttwhere s ∈ S, x ∈ X , C ∈ CF2, a ∈ A and f ∈ F \ CF2. A term [x : t]u isan abstration. A term (x : T)U is a dependent produt, simply written T ⇒ Uwhen x does not our in U . Let t denote a sequene of terms t1, . . . , tn of length
|t| = n.Every term variable x is equipped with a sort sx and, as usual, termsequivalent modulo sort-preserving renaming of bound variables are identi�ed.Let V(t) be the set of size variables in t, and FV(t) be the set of term vari-ables free in t. Let θ, σ, . . . denote term substitutions, i.e. funtions from Xto T . For our previous examples, we have CF2 = {nat, list, bool} and F =
CF2 ∪ {0, s, /, nil, cons, insert, sort}.Rewriting. Terms only built from variables and symbol appliations ft aresaid to be algebrai. We assume given a set R of rewrite rules l → r suh that
l is algebrai, l = f l with f /∈ CF2 and FV(r) ⊆ FV(l). Note that, while lefthand-sides are algebrai and thus require syntati mathing only, right hand-sides may have abstrations and produts. β-redution and rewriting are de�nedas usual: C[[x : T]u v] →β C[u{x 7→ v}] and C[lσ] →R C[rσ] if l → r ∈ R. Let
→ =→β ∪ →R and →∗ be its re�exive and transitive losure. Let t ↓ u i� thereexists v suh that t→∗ v ∗← u.Typing. We assume that every symbol f is equipped with a sort sf and atype τf = (x : T)U suh that, for all rules f l→ r ∈ R, |l| ≤ |T | (f is not appliedto more arguments than the number of arguments given by τf). Let Fs (resp.
X s) be the set of symbols (resp. variables) of sort s. As usual, we distinguishthe following lasses of terms where t is any term:� objets: o ::= x ∈ X ⋆ | f ∈ F⋆ | [x : t]o | ot� prediates: p ::= x ∈ X2 | Ca ∈ CF2 | f ∈ F2 \ CF2 | [x : t]p | (x : t)p | pt� kinds: K ::= ⋆ | (x : t)KExamples of objets are the onstrutors of indutive types 0, s, nil, cons, . . .and the funtion symbols −, /, insert, sort, Their types are prediates: indu-tive types bool, nat, list, . . ., logial onnetors ∧,∨, . . ., universal quanti�ations
(x : T)U, . . . The types of prediates are kinds: ⋆ for types like bool or nat,
⋆⇒ nat⇒ ⋆ for list, . . .An environment Γ is a sequene of variable-term pairs. An environment isvalid if a term is typable in it. The typing rules of CACSA are given in Figure 4and its subtyping rules in Figure 3. In (symb), ϕ is an arbitrary size substitution.This re�ets the fat that, in type delarations, size variables are impliitly

universally quanti�ed, like in ML. In ontrast with [12℄, subtyping uses no sortingjudgment. This simpli�ation is justi�ed in [5℄.In omparison with [5℄, we added the side ondition V(t) = ∅ in (size). Itdoes not a�et the properties proved in [5℄ and ensures that the size orderingis ompatible with subtyping (Lemma 2). By the way, one ould think of tak-ing the more general rule Cat ≤ Cbu with t ≃A u. This would eliminate theneed for equality onstraints and thus simplify a little bit the onstraint solvingproedure. More generally, one ould think in taking into aount the monotonyof type onstrutors by having, for instane, list nata ≤ list natb whenever
a ≤A b. This requires extensions to Chen's work [12℄ and proofs of many nontrivial properties of [5℄ again, like Theorem 1 below or subjet redution for β.Fig. 3. Subtyping rules(re�) T ≤ T (size) Ca

t ≤ Cb
t (C ∈ CF2, a ≤A b, V(t) = ∅)(prod) U ′ ≤ U V ≤ V ′

(x : U)V ≤ (x : U ′)V ′
(onv) T ′ ≤ U ′

T ≤ U
(T ↓ T ′, U ′ ↓ U)(trans) T ≤ U U ≤ V

T ≤ VFig. 4. Typing rules(ax) ⊢ ⋆ : 2 (prod) Γ ⊢ U : s Γ, x : U ⊢ V : s′

Γ ⊢ (x : U)V : s′(size) ⊢ τC : 2

⊢ Ca : τC

(C ∈ CF2, a ∈ A) (symb) ⊢ τf : sf

⊢ f : τfϕ
(f /∈ CF2)(var) Γ ⊢ T : sx

Γ, x : T ⊢ x : T
(x /∈dom(Γ)) (weak) Γ ⊢ t : T Γ ⊢ U : sx

Γ, x : U ⊢ t : T
(x /∈dom(Γ))(abs) Γ, x : U ⊢ v : V Γ ⊢ (x : U)V : s

Γ ⊢ [x : U]v : (x : U)V
(app) Γ ⊢ t : (x : U)V Γ ⊢ u : U

Γ ⊢ tu : V {x 7→ u}(sub) Γ ⊢ t : T Γ ⊢ T ′ : s

Γ ⊢ t : T ′
(T ≤ T ′)

∞-Terms. An ∞-term is a term whose only size annotations are ∞. Inpartiular, it has no size variable. An ∞-environment is an environment madeof∞-terms. This lass of terms is isomorphi to the lass of (unannotated) CACterms. Our goal is to be able to infer annotated types for these terms, by usingthe size annotations given in the type delarations of onstrutors and funtionsymbols 0, s, /, nil, cons, insert, sort, . . .Sine size variables are intended to our in objet type delarations only,and sine we do not want mathing to depend on size annotations, we assume

that rules and type delarations of prediate symbols nat, bool, list, . . . are madeof ∞-terms. As a onsequene, we have:Lemma 1. � If t→R t′ then, for all ϕ, tϕ→R t′ϕ.� If Γ ⊢ t : T then, for all ϕ, Γϕ ⊢ tϕ : Tϕ.We make three important assumptions:(1) R preserves typing: for all l → r ∈ R, Γ , T and σ, if Γ ⊢ lσ : T then
Γ ⊢ rσ : T . It is generally not too di�ult to hek this by hand. However,as already mentioned in [7℄, �nding su�ient onditions for this to hold ingeneral does not seem trivial.(2) β ∪ R is on�uent. This is for instane the ase if R is on�uent and left-linear [24℄, or if β ∪R is terminating and R is loally on�uent.(3) β∪R is terminating. In [7℄, it is proved that β∪R is terminating essentiallyif, in every rule f l → r ∈ R, reursive alls in r are made on terms whosesize � by typing � are smaller than l, by using lexiographi and multisetomparisons. Note that, with type-level rewriting, on�uene is neessaryfor proving termination [8℄.Important remark. One may think that there is some viious irle here: weassume the termination for proving the deidability of type-heking, while type-heking is used for proving termination! The point is that termination heksare done inrementally. At the beginning, we an hek that some set of rewriterules R1 is terminating in the system with β only. Indeed, we do not need to use

R1 in the type onversion rule (onv) for typing the terms of R1. Then, we anhek in β ∪R1 that some new set of rules R2 is terminating, and so on. . .Various properties of CACSA have already been studied in [5℄. We refer thereader to this paper if neessary. For the moment, we just mention two importantand non trivial properties based on Chen's work on subtyping with dependenttypes [12℄: subjet redution for β and transitivity elimination:Theorem 1 ([5℄). T ≤ U i� T↓ ≤s U↓, where ≤s is the restrition of ≤ to(re�), (size) and (prod).We now give some properties of the size and substitution orderings. Let →Abe the on�uent and terminating relation on A generated by the rule s∞→∞.Lemma 2. Let a↓ be the normal form of a w.r.t. →A.� a ≃A b i� a↓= b↓.� If ∞ ≤A a or sk+1a ≤A a then a↓=∞.� If a ≤A b and ϕ ≤A ψ then aϕ ≤A bψ.� If ϕ ≤A ψ and U ≤ V then Uϕ ≤ V ψ.Note that ∞-terms are in A-normal form. The last property (ompatibilityof size ordering wrt subtyping) follows from the restrition V(t) = ∅ in (size).

3 Deidability of typingIn this setion, we prove the deidability of type inferene and type-heking for
∞-terms under general assumptions that will be proved in Setion 4. We beginwith some informal explanations.How to do type inferene? The ritial ases are (symb) and (app). In (symb),a symbol f an be typed by any instane of τf , and two di�erent instanes may beneessary for typing a single term (e.g. s(sx)). For type inferene, it is thereforeneessary to type f by its most general type, namely a renaming of τf with freshvariables, and to instantiate it later when neessary.Assume now that we want to infer the type of an appliation tu. We naturallytry to infer a type for t and a type for u using distint fresh variables. Assume thatwe get T and U ′ respetively. Then, tu is typable if there is a size substitution
ϕ and a produt type (x : P)Q suh that Tϕ ≤ (x : P)Q and U ′ϕ ≤ P .After Theorem 1, heking whether A ≤ B amounts to hek whether A↓ ≤s
B↓, and heking whether A ≤s B amounts to apply the (prod) rule as muhas possible and then to hek that (re�) or (size) holds. Hene, Tϕ ≤ (x : P)Qonly if T↓ is a produt. Thus, the appliation tu is typable if T↓ = (x : U)V andthere exists ϕ suh that U ′↓ϕ ≤s Uϕ. Finding ϕ suh that Aϕ ≤s Bϕ amountsto apply the (prod) rule on A ≤s B as muh as possible and then to �nd ϕ suhthat (re�) or (size) holds. So, a subtyping problem an be transformed into aonstraint problem on size variables.We make this preise by �rst de�ning the onstraints that an be generated.De�nition 1 (Constraints). Constraint problems are de�ned as follows:

C ::= ⊥ | ⊤ | C ∧ C | a = b | a ≤ bwhere a, b ∈ A, = is ommutative, ∧ is assoiative and ommutative, C ∧ C =
C ∧⊤ = C and C ∧⊥ = ⊥. A �nite onjuntion C1 ∧ . . .∧Cn is identi�ed with ⊤if n = 0. A onstraint problem is in anonial form if it is neither of the form
C ∧ ⊤, nor of the form C ∧ ⊥, nor of the form C ∧ C ∧ D. In the following, wealways assume that onstraint problems are in anonial form. An equality (resp.inequality) problem is a problem having only equalities (resp. inequalities). Aninequality ∞ ≤ α is alled an ∞-inequality. An inequality spα ≤ sqβ is alled alinear inequality. Solutions to onstraint problems are de�ned as follows:� S(⊥) = ∅,� S(⊤) is the set of all size substitutions,� S(C ∧ D) = S(C) ∩ S(D),� S(a = b) = {ϕ | aϕ = bϕ},� S(a ≤ b) = {ϕ | aϕ ≤A bϕ}.Let Sℓ(C) = {ϕ | ∀α, αϕ↓ 6=∞} be the set of linear solutions.We now prove that a subtyping problem an be transformed into onstraints.Lemma 3. Let S(U, V) be the set of substitutions ϕ suh that Uϕ ≤s V ϕ. Wehave S(U, V) = S(C(U, V)) where C(U, V) is de�ned as follows:

� C((x : U)V, (x : U ′)V ′) = C(U ′, U) ∧ C(V, V ′),� C(Cau, Cbv) = a ≤ b ∧ E0(u1, v1) ∧ . . . ∧ E0(un, vn) if |u| = |v| = n,� C(U, V) = E1(U, V) in the other ases,and E i(U, V) is de�ned as follows:� E i((x :U)V, (x :U ′)V ′) = E i([x :U]V, [x :U ′]V ′) = E i(UV,U ′V ′)
= E i(U,U ′) ∧ E i(V, V ′),� E1(Ca, Cb) = a = b,� E0(Ca, Cb) = a = b ∧∞ ≤ a,� E i(c, c) = ⊤ if c ∈ S ∪ X ∪ F \ CF2,� E i(U, V) = ⊥ in the other ases.Proof. First, we learly have ϕ ∈ S(E1(U, V)) i� Uϕ = V ϕ, and ϕ ∈ S(E0(U, V))i� Uϕ = V ϕ and V(Uϕ) = ∅. Thus, S(U, V) = S(C(U, V)). ⊓⊔Fig. 5. Type inferene rules(ax) Γ ⊢

Y

a ⋆ : 2 (prod) Γ ⊢
Y

a U : sx Γ, x : U ⊢
Y

a V : s′

Γ ⊢Ya (x : U)V : s′(size) Γ ⊢
Y

a C∞ : τC (C ∈ CF2) (symb) Γ ⊢
Y

a f : τfρ
Y

(f /∈ CF2)(var) Γ ⊢
Y

a x : xΓ (x∈dom(Γ)) (abs) Γ ⊢
Y

a U : sx Γ, x : U ⊢
Y

a v : V

Γ ⊢Ya [x : U]v : (x : U)V
(V 6= 2)(app) Γ ⊢

Y

a t : T Γ ⊢
Y∪V(T)

a u : U ′

Γ ⊢Ya tu : V ϕρ
Y
{x 7→ u}

(T↓ = (x : U)V , C = C(U ′↓, U),
S(C) 6= ∅, ϕ = mgs(C))For renaming symbol types with variables outside some �nite set of alreadyused variables, we assume given a funtion ρ whih, to every �nite set Y ⊆ Z,assoiates an injetion ρ

Y
from Y to Z\Y. In Figure 5, we de�ne a type inferenealgorithm ⊢Ya parametrized by a �nite set Y of (already used) variables under thefollowing assumptions:(1) It is deidable whether S(C) is empty or not.(2) If S(C) 6=∅ then C has a most general solution mgs(C).(3) If S(C) 6= ∅ then mgs(C) is omputable.It would be interesting to try to give a modular presentation of type infereneby learly separating onstraint generation from onstraint solving, as it is donefor ML in [25℄ for instane. However, for dealing with dependent types, oneat least needs higher-order pattern uni�ation. Indeed, assume that we have aonstraint generation algorithm whih, for a term t and a type (meta-)variable

X , omputes a set C of onstraints on X whose solutions provide valid instanesof X , i.e. valid types for t. Then, in (app), if the onstraint generation gives
C1 for t : Y and C2 for u : Z, then it should give something like C1 ∧ C2 ∧
(∃U.∃V. Y =βη (x : U)V x ∧ Z ≤ U ∧X=βη V u) for tu : X .

We now prove the orretness, ompleteness and minimality of ⊢Ya , assumingthat symbol types are well sorted (⊢ τf : sf for all f).Theorem 2 (Corretness). If Γ is a valid ∞-environment and Γ ⊢Ya t : T ,then Γ ⊢ t : T , t is an ∞-term and V(T) ∩ Y = ∅.Proof. By indution on ⊢Ya . We only detail the (app) ase.(app) By indution hypothesis, Γ ⊢ t : T , Γ ⊢ u : U ′ and t and u are∞-terms.Thus, tu is an ∞-term. By Lemma 1, Γ ⊢ t : Tϕ and Γ ⊢ u : U ′ϕ. Sine
Tϕ↓= (x : Uϕ)V ϕ, we have Tϕ 6= 2 and Γ ⊢ Tϕ : s. By subjet redution,
Γ ⊢ (x : Uϕ)V ϕ : s. Hene, by (sub), Γ ⊢ t : (x : Uϕ)V ϕ. By Lemma 3,
S(C) = S(U ′↓, U) and U ′↓ϕ ≤s Uϕ. Sine Γ ⊢ Uϕ : s′, by (sub), Γ ⊢ u : Uϕ.Therefore, by (app), Γ ⊢ tu : V ϕ{x 7→ u} and Γ ⊢ tu : V ϕρ

Y
{x 7→ u} sine

V(u) = ∅. ⊓⊔Theorem 3 (Completeness and minimality). If Γ is an ∞-environment, tis an ∞-term and Γ ⊢ t : T , then there are T ′ and ψ suh that Γ ⊢Ya t : T ′ and
T ′ψ ≤ T .Proof. By indution on ⊢. We only detail some ases.(symb) Take T ′ = τfρY and ψ = ρ−1

Y
ϕ.(app) By indution hypothesis, there exist T , ψ1, U ′ and ψ2 suh that Γ ⊢Ya

t : T , Tψ1 ≤ (x : U)V , Γ ⊢Y∪V(T)

a u : U ′ and U ′ψ2 ≤ U . By Lemma 2,
V(U ′) ∩ V(T) = ∅. Thus, dom(ψ1) ∩ dom(ψ2) = ∅. So, let ψ = ψ1 ⊎ ψ2. ByLemma 1, T↓ψ ≤s (x : U↓)V ↓. Thus, T↓ = (x : U1)V1, U↓ ≤ U1ψ and V1ψ ≤
V ↓. Sine U ′ψ ≤ U and U↓ ≤ U1ψ, we have U ′↓ ψ ≤ U1ψ and, by Lemma 1,
U ′↓ ψ ≤s U1ψ. Thus, ψ ∈ S(U ′↓, U1). By Lemma 3, S(U ′↓, U1) = S(C) with
C = C(U ′↓, U1). Thus, S(C) 6= ∅ and there exists ϕ = mgs(C). Hene, Γ ⊢Ya
tu : V1ϕρYθ where θ = {x 7→ u}. We are left to prove that there exists ϕ′ suhthat V1ϕρYθϕ

′ ≤ V θ. Sine ϕ = mgs(C), there exists ψ′ suh that ϕψ′ ≤A ψ.So, let ϕ′ = ρ−1
Y
ψ′. Sine V(u) = ∅, θ ommutes with size substitutions. Sine

V1ψ ≤ V ↓ ≤ V , by Lemma 2, V1ϕρY θϕ
′ = V1ϕψ

′θ ≤ V1ψθ ≤ V θ. ⊓⊔Theorem 4 (Deidability of type-heking). Let Γ be an ∞-environment,
t be an ∞-term and T be a type suh that Γ ⊢ T : s. Then, the problem ofknowing whether there is ψ suh that Γ ⊢ t : Tψ is deidable.Proof. The deision proedure onsists in (1) trying to ompute the type T ′suh that Γ ⊢Ya t : T ′ by taking Y = V(T), and (2) trying to ompute ψ =
mgs(C(T ′, T)). Every step is deidable.We prove its orretness. Assume that Γ ⊢Ya t : T ′, Y = V(T) and ψ =
mgs(C(T ′, T)). Then, T ′ψ ≤ Tψ and, by Theorem 2, Γ ⊢ t : T ′. By Lemma 1,
Γ ⊢ t : T ′ψ. Thus, by (sub), Γ ⊢ t : Tψ.We now prove its ompleteness. Assume that there is ψ suh that Γ ⊢ t : Tψ.Let Y = V(T). Sine Γ is valid and V(Γ) = ∅, by Theorem 3, there are T ′ and
ϕ suh that Γ ⊢Ya t : T ′ and T ′ϕ ≤ Tψ. This means that the deision proedureannot fail (ψ ⊎ ϕ ∈ S(T ′, T)). ⊓⊔

4 Solving onstraintsIn this setion, we prove that the satis�ability of onstraint problems is deidable,and that a satis�able problem has a smallest solution. The proof is organizedas follows. First, we introdue simpli�ation rules for equalities similar to usualuni�ation proedures (Lemma 4). Seond, we introdue simpli�ation rules forinequalities (Lemma 5). From that, we an dedue some general result on theform of solutions (Lemma 7). We then prove that a onjuntion of inequalities hasalways a linear solution (Lemma 8). Then, by using linear algebra tehniques,we prove that a satis�able inequality problem has always a smallest solution(Lemma 11). Finally, all these results are ombined in Theorem 5 for provingthe assumptions of Setion 3.Let a state S be ⊥ or a triplet E|E ′|C where E and E ′ are onjuntions ofequalities and C a onjuntion of inequalities. Let S(⊥) = ∅ and S(E|E ′|C) =
S(E ∧ E ′ ∧ C) be the solutions of a state. A onjuntion of equalities E is insolved form if it is of the form α1 = a1 ∧ . . . ∧ αn = an (n ≥ 0) with thevariables αi distint from one another and V(a) ∩ {α} = ∅. It is identi�ed withthe substitution {α 7→ a}.Fig. 6. Simpli�ation rules for equalities
(1) E ∧ sa = sb | E ′ | C E ∧ a = b | E ′ | C
(2) E ∧ a = a | E ′ | C E | E ′ | C
(3) E ∧ a = sk+1a | E ′ | C ⊥
(4) E ∧∞ = sk+1a | E ′ | C ⊥
(5) E ∧ α = a | E ′ | C E{α 7→a} | E ′{α 7→a} ∧ α = a | C{α 7→a} if α /∈V(a)The simpli�ation rules on equalities given in Figure 6 orrespond to the usualsimpli�ation rules for �rst-order uni�ation [19℄, exept that substitutions arepropagated into the inequalities.Lemma 4. The relation of Figure 6 terminates and preserves solutions: if S1

S2 then S(S1) = S(S2). Moreover, any normal form of E|⊤|C is either ⊥ or ofthe form ⊤|E ′|C′ with E ′ in solved form and V(C′) ∩ dom(E ′) = ∅.We now introdue a notion of graphs due to Pratt [26℄ that allows us to detetthe variables that are equivalent to ∞. In the following, we use other standardtehniques from graph ombinatoris and linear algebra. Note however that weapply them on symboli onstraints, while they are generally used on numerialonstraints. What we are looking for is substitutions, not numerial solutions.In partiular, we do not have the onstant 0 in size expressions (although itould be added without having to hange many things). Yet, for proving thatsatis�able problems have most general solutions, we will use some isomorphismbetween symboli solutions and numerial ones (see Lemma 10).De�nition 2 (Dependeny graph). To a onjuntion of linear inequalities
C, we assoiate a graph GC on V(C) as follows. To every onstraint spα ≤ sqβ,

we assoiate the labeled edge α p−q
−→ β. The ost of a path α1

p1
−→ . . .

pk−→ αk+1 is
Σk
i=1pi. A yli path (i.e. when αk+1 = α1) is inreasing if its ost is > 0.Fig. 7. Simpli�ation rules for inequalities

(1) C ∧ a ≤ sk∞ C
(2) C ∧ D C ∧ {∞ ≤ α | α ∈ V(D)} if GD is inreasing
(3) C ∧ sk∞ ≤ slα C{α 7→ ∞} ∧∞ ≤ α if α ∈ V(C)A onjuntion of inequalities C is in redued form if it is of the form C∞ ∧ Cℓwith C∞ a onjuntion of ∞-inequalities, Cℓ a onjuntion of linear inequalitieswith no inreasing yle, and V(C∞) ∩ V(Cℓ) = ∅.Lemma 5. The relation of Figure 7 on inequality problems terminates and pre-serves solutions. Moreover, any normal form is in redued form.Lemma 6. If C is a onjuntion of inequalities then S(C) 6= ∅. Moreover, if Cis a onjuntion of ∞-inequalities then S(C) = {ϕ | ∀α ∈ V(C), αϕ↓=∞}.Lemma 7. Assume that E|⊤|C has normal form ⊤|E ′|C′ by the rules of Figure6, and C′ has normal form D by the rules of Figure 7. Then, S(E ∧ C) 6= ∅,

E ′ = mgs(E) and every ϕ ∈ S(E ∧ C) is of the form E ′(υ ⊎ ψ) with υ ∈ S(D∞)and ψ ∈ S(Dℓ).Proof. The fat that, in this ase, S(E) 6= ∅ and E ′ = mgs(E) is a well knownresult on uni�ation [19℄. Sine S(E ∧ C) = S(E ′ ∧ D), V(E ′) ∩ V(D) = ∅ and
S(D) 6= ∅, we have S(E ∧C) 6= ∅. Furthermore, every ϕ ∈ S(E ∧C) is of the form
E ′ϕ′ sine S(E ′ ∧ D) ⊆ S(E ′). Now, sine V(D∞) ∩ V(Dℓ) = ∅, ϕ′ = υ ⊎ ψ with
υ ∈ S(D∞) and ψ ∈ S(Dℓ). ⊓⊔Hene, the solutions of a onstraint problem an be obtained from the solu-tions of the equalities, whih is a simple �rst-order uni�ation problem, and fromthe solutions of the linear inequalities resulting of the previous simpli�ations.In the following, let C be a onjuntion of K linear inequalities with noinreasing yle, and L be the biggest label in absolute value in GC . We �rstprove that C has always a linear solution by using Bellman-Ford's algorithm.Lemma 8. Sℓ(C) 6= ∅.Proof. Let succ(α) = {β | α

p
−→ β ∈ GC} and succ∗ be the re�exive andtransitive losure of succ. Choose γ ∈ Z \ V(C), a set R of verties in GC suhthat succ∗(R) overs GC , and a minimal ost qβ ≥ KL for every β ∈ R. Letthe ost of a vertex αk+1 along a path α1

p1
−→ α2

p2
−→ . . . αk+1 with α1 ∈ Rbe qα1 + Σk

i=1pi. Now, let ωβ be the maximal ost for β along all the possiblepaths from a vertex in R. We have ωβ ≥ 0 sine there is no inreasing yle.Hene, for all edge α p
−→ β ∈ GC , we have ωα + p ≤ ωβ. Thus, the substitution

ϕ = {α 7→ sωαγ | α ∈ V(C)} ∈ Sℓ(C). ⊓⊔

We now prove that any solution has a more general linear solution. Thisimplies that inequality problems are always satis�able and that the satis�abilityof a onstraint problem only depends on its equalities.Lemma 9. If ϕ ∈ S(C) then there exists ψ ∈ Sℓ(C) suh that ψ ≤A ϕ.We now prove that Sℓ(C) has a smallest element. To this end, assume thatinequalities are ordered and that V(C) = {α1, . . . , αn}. We assoiate to C anadjaeny-like matrix M = (mi,j) with K lines and n olumns, and a vetor
v = (vi) of length K as follows. Assume that the i-th inequality of C is of theform spαj ≤ sqαk. Then, mi,j = 1, mi,k = −1, mi,l = 0 if l /∈ {j, k}, and
vi = q − p. Let P = {z ∈ Qn | Mz ≤ v, z ≥ 0} and P ′ = P ∩ Zn.To a substitution ϕ ∈ Sℓ(C), we assoiate the vetor zϕ suh that zϕi is thenatural number p suh that αiϕ = spβ.To a vetor z ∈ P ′, we assoiate a substitution ϕz as follows. Let {G1, . . . , Gs}be the onneted omponents of GC . For all i, let ci be the omponent numberto whih αi belongs. Let β1, . . . , βs be variables distint from one another andnot in V(C). We de�ne αiϕz = sziβci .We then study the relations between symboli and numerial solutions.Lemma 10.� If ϕ ∈ Sℓ(C) then zϕ ∈ P ′. Furthermore, if ϕ ≤A ϕ′ then zϕ ≤ zϕ′.� If z ∈ P ′ then ϕz ∈ Sℓ(C). Furthermore, if z ≤ z′ then ϕz ≤A ϕz′ .� zϕz = z and ϕzϕ ⊑ ϕ.Finally, we are left to prove that P ′ has a smallest element. The proof usestehniques from linear algebra.Lemma 11. There is a unique z∗ ∈ P ′ suh that, for all z ∈ P ′, z∗ ≤ z.An e�ient algorithm for omputing the smallest solution of a set of linearinequalities with at most two variables per inequality an be found in [23℄. Amore e�ient algorithm an perhaps be obtained by taking into aount thespei�ities of our problems.Gathering all the previous results, we get the deidability.Theorem 5 (Deidability). Let C be a onstraint problem. Whether S(C) isempty or not an be deided in polynomial time w.r.t. the size of equalities in C.Furthermore, if S(C) 6= ∅ then S(C) has a smallest solution that is omputablein polynomial time w.r.t. the size of inequalities.5 Conlusion and related worksIn Setion 3, we give a general algorithm for type inferene with size annotationsbased on onstraint solving, that does not depend on the size algebra. For havingompleteness, we require satis�able sets of onstraints to have a omputable mostgeneral solution. In Setion 4, we prove that this is the ase if the size algebra is

built from the symbols s and∞ whih, although simple, aptures usual indutivede�nitions (sine then the size orresponds to the number of onstrutors) andmuh more (see the introdution and [7℄).A natural extension would be to add the symbol + in the size algebra, fortyping list onatenation in a more preise way for instane. We think that thetehniques used in the present work an ope with this extension. However, with-out restritions on symbol types, one may get onstraints like 1 ≤ α+β and loosethe uniity of the smallest solution. We think that simple and general restri-tions an be found to avoid suh onstraints to appear. Now, if symbols like ×are added to the size algebra, then we lose linearity and need more sophistiatedmathematial tools.The point is that, beause we onsider dependent types and subtyping, we arenot only interested in satis�ability but also in minimality and uniity, in orderto have ompleteness of type inferene [12℄. There exist many works on typeinferene and onstraint solving. We only mention some that we found more orless lose to ours: Zenger's indexed types [32℄, Xi's Dependent1 ML [30℄, Oderskyet al 's ML with onstrained types [25℄, Abel's sized types [1℄, and Barthe et al 'sstaged types [4℄. We note the following di�erenes:Terms. Exept [4℄, the previously ited works onsider λ-terms à la Curry,i.e. without types in λ-abstrations. Instead, we onsider λ-terms à la Churh,i.e. with types in λ-abstrations. Note that type inferene with λ-terms à laCurry and polymorphi or dependent types is not deidable. Furthermore, theyall onsider funtions de�ned by �xpoint and mathing on onstrutors. Instead,we onsider funtions de�ned by rewrite rules with mathing both on onstrutorand de�ned symbols (e.g. assoiativity and distributivity rules).Types. If we disregard onstraints attahed to types, they onsider simpleor polymorphi types, and we onsider fully polymorphi and dependent types.Now, our data type onstrutors arry no onstraints: onstraints only ome upfrom type inferene. On the other hand, the onstrutors of Zenger's indexeddata types must satisfy polynomial equations, and Xi's index variables an beassigned boolean propositions that must be satis�able in some given model (e.g.Presburger arithmeti). Expliit onstraints allow a more preise typing andmore funtion de�nitions to be aepted. For instane (see [7℄), in order forquiksort to have type listα ⇒ listα, we need the auxiliary pivot funtion to havetype nat∞ ⇒ listα ⇒ listβ×listγ with the onstraint α = β+γ. And, if quiksorthas type list∞ ⇒ list∞ then a rule like f (cons x l)→ g x (f (quicksort l)) isrejeted sine (quicksort l) annot be proved to be smaller than (cons x l). Thesame holds in [1, 4℄.Constraints. In ontrast with Xi and Odersky et al who onsider the on-straint system as a parameter, giving DML(C) and HM(X) respetively, we on-sider a �xed onstraint system, namely the one introdued in [3℄. It is lose tothe one onsidered by Abel whose size algebra does not have∞ but whose typeshave expliit bounded quanti�ations. Indutive types are indeed interpretedin the same way. We already mentioned also that Zenger onsiders polynomial1 By �dependent�, Xi means onstrained types, not full dependent types.

equations. However, his equivalene on types is de�ned in suh a way that, forinstane, listα is equivalent to list2α, whih is not very natural. So, the nextstep in our work would be to onsider expliit onstraints from an abstratonstraint system. By doing so, Odersky et al get general results on the om-pleteness of inferene. Sulzmann [28℄ gets more general results by swithing toa fully onstrained-based approah. In this approah, ompleteness is ahievedif every onstraint an be represented by a type. With term-based inferene anddependent types, whih is our ase, ompleteness requires minimality whih isnot always possible [12℄.Constraint solving. In [4℄, Barthe et al onsider system F with ML-likede�nitions and the same size annotations. Sine they have no dependent type,they only have inequality onstraints. They also use dependany graphs for elim-inating ∞, and give a spei� algorithm for �nding the most general solution.But they do not study the relations between linear onstraints and linear pro-gramming. So, their algorithm is less e�ient than [23℄, and annot be extendedto size annotations like a+ b, for typing addition or onatenation.Inferene of size annotations. As already mentioned in the introdution,we do not infer size annotations for funtion symbols like [13, 4℄. We just hekthat funtion de�nitions are valid wrt size annotations, and that they preservetermination. However, �nding annotations that satisfy these onditions an eas-ily be expressed as a onstraint problem. Thus, the tehniques used in this paperan ertainly be extended for inferring size annotations too. For instane, if wetake − : natα⇒natβ⇒natX , the rules of − given in the introdution are validwhenever 0 ≤ X , α ≤ X and X ≤ X , and the most general solution of thisonstraint problem is X = α.Aknowledgments. I would like to thank very muh Miki Hermann, Hong-wei Xi, Christophe Ringeissen and Andreas Abel for their omments on a pre-vious version of this paper.Referenes1. A. Abel. Termination heking with types. Theoretial Informatis and Applia-tions, 38(4):277�319, 2004.2. H. Barendregt. Lambda aluli with types. In S. Abramsky, D. Gabbay, andT. Maibaum, editors, Handbook of logi in omputer siene, volume 2. OxfordUniversity Press, 1992.3. G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based ter-mination of reursive de�nitions. Mathematial Strutures in Computer Siene,14(1):97�141, 2004.4. G. Barthe, B. Grégoire, and F. Pastawski. Pratial inferene for type-based termi-nation in a polymorphi setting. In Proeedings of the 7th International Confereneon Typed Lambda Caluli and Appliations, Leture Notes in Computer Siene3461, 2005.5. F. Blanqui. Full version of [7℄. Available on the web.

6. F. Blanqui. Rewriting modulo in Dedution modulo. In Proeedings of the 14thInternational Conferene on Rewriting Tehniques and Appliations, Leture Notesin Computer Siene 2706, 2003.7. F. Blanqui. A type-based termination riterion for dependently-typed higher-orderrewrite systems. In Proeedings of the 15th International Conferene on RewritingTehniques and Appliations, Leture Notes in Computer Siene 3091, 2004.8. F. Blanqui. De�nitions by rewriting in the Calulus of Construtions. MathematialStrutures in Computer Siene, 15(1):37�92, 2005.9. F. Blanqui. Full version. See http://www.loria.fr/~blanqui/, 2005.10. F. Blanqui. Indutive types in the Calulus of Algebrai Construtions. Funda-menta Informatiae, 65(1-2):61�86, 2005.11. V. Breazu-Tannen. Combining algebra and higher-order types. In Proeedings ofthe 3rd IEEE Symposium on Logi in Computer Siene, 1988.12. G. Chen. Subtyping, Type Conversion and Transitivity Elimination. PhD thesis,Université Paris VII, Frane, 1998.13. W. N. Chin and S. C. Khoo. Calulating sized types. Journal of Higher-Order andSymboli Computation, 14(2-3):261�300, 2001.14. H. Comon. Solving symboli ordering onstraints. International Journal of Foun-dations of Computer Siene, 1(4):387�412, 1990.15. Coq-Development-Team. The Coq Proof Assistant Referene Manual - Version8.0. INRIA Roquenourt, Frane, 2004. http://oq.inria.fr/.16. T. Coquand. An algorithm for testing onversion in type theory. In G. Huetand G. Plotkin, editors, Logial Frameworks, pages 255�279. Cambridge UniversityPress, 1991.17. T. Coquand and G. Huet. The Calulus of Construtions. Information and Com-putation, 76(2-3):95�120, 1988.18. T. Coquand and C. Paulin-Mohring. Indutively de�ned types. In Proeedingsof the International Conferene on Computer Logi, Leture Notes in ComputerSiene 417, 1988.19. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,Handbook of Theoretial Computer Siene, volume B, hapter 6. North-Holland,1990.20. E. Giménez. Strutural reursive de�nitions in type theory. In Proeedings of the25th International Colloquium on Automata, Languages and Programming, LetureNotes in Computer Siene 1443, 1998.21. J. Hughes, L. Pareto, and A. Sabry. Proving the orretness of reative systemsusing sized types. In Proeedings of the 23th ACM Symposium on Priniples ofProgramming Languages, 1996.22. J.-P. Jouannaud and A. Rubio. The Higher-Order Reursive Path Ordering. InProeedings of the 14th IEEE Symposium on Logi in Computer Siene, 1999.23. G. Lueker, N. Megiddo, and V. Ramahandran. Linear programming with twovariables per inequality in poly-log time. SIAM Journal on Computing, 19(6):1000�1010, 1990.24. F. Müller. Con�uene of the lambda alulus with left-linear algebrai rewriting.Information Proessing Letters, 41(6):293�299, 1992.25. M. Odersky, M. Sulzmann, and M. Wehr. Type inferene with onstrained types.Theory and Pratie of Objet Systems, 5(1):35�55, 1999.26. V. Pratt. Two easy theories whose ombination is hard. Tehnial report, MIT,United States, 1977.27. A. Shrijver. Theory of linear and integer programming. Wiley-Intersiene Seriesin Disrete Mathematis and Optimization. John Wiley and Sons, 1986.

28. M. Sulzmann. A general type inferene framework for Hindley/Milner style sys-tems. In Proeedings of the 5th Fuji International Symposium on Funtional andLogi Programming, Leture Notes in Computer Siene 2024, 2001.29. D. Walukiewiz-Chrz¡szz. Termination of rewriting in the Calulus of Constru-tions. Journal of Funtional Programming, 13(2):339�414, 2003.30. H. Xi. Dependent types in pratial programming. PhD thesis, Carnegie-Mellon,Pittsburgh, United States, 1998.31. H. Xi. Dependent types for program termination veri�ation. Journal of Higher-Order and Symboli Computation, 15(1):91�131, 2002.32. C. Zenger. Indexed types. Theoretial Computer Siene, 187(1-2):147�165, 1997.Proofs5.1 Remark about onstraint solvingOne ould think of using Comon's work [14℄ but it is not possible for severalreasons:� We onsider two kinds of onstraints: equality onstraints a = b where = isinterpreted by the syntati equality, and inequality onstraints a ≤ b where
≤ is interpreted by the quasi-ordering ≤A on size expressions. Instead of largeinequalities, Comon onsiders strit inequalities a < b where < is interpretedby the lexiographi path ordering (LPO). Sine ≤A is a quasi-ordering, wedo not have a ≤A b⇔ a <A b ∨ a = b.� Even though one an get rid of ∞ symbols in a �rst step, thing that we do inLemmas 7 and 9, Comon assumes that there is at least one onstant symbol.Indeed, he studies the ground solutions of a boolean ombination of equationsand inequations. However, without ∞, we have no ground term. It does notmatter sine we do not restrit ourself to ground solutions.5.2 Proof of Lemma 4The relation stritly dereases the measure (s(E), c(E))lex where s(E) is thenumber of onstraints and c(E) the number of symbols. Its orretness is easilyheked. Now, let S = E|E ′|C′ be a normal form of E|⊤|C. If E 6= ⊤ then S isreduible. Now, one an easily hek that, if E1|E ′1|C1 E2|E ′2|C2, E ′1 is in solvedform and V(C1)∩dom(E ′1) = ∅, then E ′2 is in solved form and V(C2)∩dom(E ′2) = ∅.So, E ′ is in solved form and V(C′) ∩ dom(E ′) = ∅.5.3 Proof of Lemma 5The relation stritly dereases the measure (c(C), v(C))lex where c(C) is the num-ber of symbols and variables and v(C) the multiset of ourrenes of eah vari-able in C. We now prove the orretness of these rules. (1) is trivial. (3) followsfrom Lemma 2. For (2), let D′ =

∧

{∞ ≤ α | α ∈ V(D)}. We learly have
S(D′) ⊆ S(D). Assume that GD = α1

p1
−→ . . .

pk−→ α1 and θ ∈ S(D). If αiθ↓=∞

then, for all i, αiθ↓= ∞ and θ ∈ S(D′). Otherwise, there exist γ ∈ Z and, forall i, mi ∈ N suh that αiθ = smiγ, m1 + p1 ≤ m2, . . . , mk + pk ≤ m1. Thus,
Σk
i=1mi +Σk

i=1pi ≤ Σk
i=1mi. Hene, Σk

i=1pi ≤ 0 whih is not possible sine GDis inreasing. Finally, a normal form is learly in redued form.5.4 Proof of Lemma 6Let S = {ϕ | ∀α ∈ V(C), αϕ↓= ∞}. We prove that S ⊆ S(C). Let ϕ = {α 7→
∞ | α ∈ V(C)} and a ≤ b ∈ C. We have a = ska′ and b = slb′ with a′, b′ ∈
Z ∪ {∞}. So, by Lemma 2, aϕ = sk∞ ≤A bϕ = sl∞ and ϕ ∈ S(C).Assume now that C is a onjuntion of ∞-inequalities. Let ϕ ∈ S(C) and
α ∈ V(C). Sine α ∈ V(C), there exists a onstraint ∞ ≤ α in C. Thus, byLemma 2, αϕ↓=∞ and ϕ ∈ S.5.5 Proof of Lemma 9We an assume w.l.o.g. that dom(ϕ) ⊆ V(C). If, for all α ∈ V(C), αϕ↓= ∞,then any ψ ∈ Sℓ(C) 6= ∅ works. Otherwise, there exists α ∈ V(C), γ and psuh that αϕ = spγ. W.l.o.g., we an assume that C has only one onnetedomponent. Let Dℓ = {α ∈ dom(ϕ) | αϕ ↓6= ∞}, D∞ = dom(ϕ) \ Dℓ and
D′

∞ = {β ∈ D∞ | spα ≤ sqβ ∈ C ⇒ αϕ↓6= ∞}. For every α ∈ Dℓ, let ωα bethe integer k suh that αϕ = skγ. Let C1 = {spα ≤ sqβ | αϕ↓6= ∞, βϕ↓6= ∞},
C2 = {spα ≤ sqβ | αϕ↓6= ∞, βϕ↓= ∞}, C3 = {spα ≤ sqβ | αϕ↓= ∞, βϕ↓= ∞}and C′3 = C3 ⊎ {β ≤ β | β ∈ D′

∞}. We have C = C1 ⊎ C2 ⊎ C3. After the proof ofLemma 8, by taking R ⊇ D′
∞ and qβ = max{KL,ωα + p− q | spα ≤ sqβ ∈ C}for every β ∈ D′

∞, there exists ϕ′ ∈ Sℓ(C′3). We have dom(ϕ′) = V(C′3) = D∞.Let ψ = ϕ|Dℓ ⊎ ϕ
′. We learly have ψ linear and ψ ≤A ϕ. We now prove that

ψ ∈ Sℓ(C). We have ψ|V(C1) = ϕ|V(C1) ∈ S(C1) and ψ|V(C3) = ϕ′|V(C3) ∈ S(C3).Let now spα ≤ sqβ ∈ C2. We must hek that spαϕ ≤ sqβϕ′. It follows from thede�nition of ϕ′.5.6 Proof of Lemma 10� Assume that the i-th inequality is of the form spαj ≤ sqαk. We must provethat zϕj −zϕk ≤ q−p. By assumption, spαjϕ ≤A sqαkϕ. Hene, p+zϕj ≤ q+zϕk .The seond laim is immediate.� Assume that the i-th inequality is of the form spαj ≤ sqαk. We must provethat spαjϕz ≤A sqαkϕz , that is, sp+zjβcj ≤A sq+zkβck . Sine αj and αk areonneted in GC , cj = ck. And, by assumption, zj − zk ≤ q − p.� zϕzi is the integer p suh that αiϕz = spβ, and αiϕz = sziβci . Thus, p = zi.� αiϕzϕ = sz
ϕ
i βci , and zϕi is the integer p suh that αiϕ = spβ. Every variableof a onneted omponent c is mapped by ϕ to the same variable γc. Let ψbe the substitution whih assoiates γc to βc. We have αiϕzϕψ = spβciψ =

spγci = αiϕ. Thus, ϕzϕ ⊑ ϕ.

5.7 Proof of Lemma 11Lemma 11 is Lemma 12 (6) below.See for instane [27℄ for details on polyhedrons, i.e. sets of the form {z ∈
Qn | Mz ≤ v}. Note that P = {z ∈ Qn | M ′z ≤ v′} with M ′ =

(

M
−I

) and
v′ =

(

v
0

), where I is the identity matrix. We say that a bit vetor is a vetorwhose omponents are in {0, 1}. Given two vetors za and zb, min{za, zb} is thevetor z suh that zi = min{zai , z
b
i }.Lemma 12.(1) P is pointed, i.e. his lineality spae {z∈Qn|M ′z = 0} has dimension 0.(2) P is integral, i.e. P is the onvex hull of P ′.(3) P is in�nite.(4) Every minimal proper fae of P has for diretion a bit vetor.(5) If za, zb ∈ P then min{za, zb} ∈ P .(6) There is a unique z∗ ∈ P ′ suh that, for all z ∈ P ′, z∗ ≤ z.Proof. (1) If M ′z = 0 then −Iz = 0 and z = 0.(2) P is integral sine the transpose ofM is totally unimodular: it is a {0,±1}-matrix with in eah olumn exatly one +1 and one −1 ([27℄ p. 274).(3) As any polyhedron, there is a polytope Q suh that P = Q+ char.cone(P)([27℄ p. 88), where char.cone(P) = {z ∈ Qn | M ′z ≤ 0} is the harateristione of P . Sine every row ofM has exatly one +1 and one −1, the sum ofthe olumns ofM is 0. Thus, the vetor 1 whose omponents are all equal to

1 belongs to char.cone(P) and, either P = ∅ or P is in�nite. After Lemma8, Sℓ(C) 6= ∅. Thus, P is in�nite.(4) For every minimal proper fae F of P , there exist a row submatrix (L u) of
(M ′ v′) and two rows (ai v′i) and (aj v′j) of (M ′ v′) suh that rank(L) =

rank(M ′) − 1 and F = {z ∈ Qn | Lz = u, taiz ≤ v′i,
tajz ≤ v′j} ([27℄ p.105). The diretion of F is given by Ker(L) = {z ∈ Qn | Lz = 0}. Let ej bethe unit vetor suh that ejj = 1 and eji = 0 if i 6= j. Sine rank(M ′) = n,

rank(L) = n− 1 and there exists k ≤ n suh that {Lej | j 6= k} is a familyof linearly independent vetors. Thus, N =

(

L
tek

) is not singular. Let w =

N−1ek. If Lz = 0 then Nz = zke
k and z = zkw. We have N−1 =

tcom(N)

det(N)where tcom(N) is the transpose matrix of the ofators of N . Now, one aneasily prove that, if every row (or olumn) of a matrix U is either 0, ±ejor ej − ek with j 6= k, then det(U) ∈ {0,±1}. Hene, det(N) = ±1 and
w is a {0,±1}-vetor. The equations satis�ed by z in Lz = 0 are either
zi = 0 or zi = zj. If there is no equation involving zi then Ker(L) = Qeiand w = ±ei. Otherwise, w ≥ 0 or w ≤ 0. Sine w an be replaed by −ww.l.o.g, w an always be de�ned as a bit vetor.

(5) Let z = min{za, zb}. If za ≤ zb or zb ≤ za, this is immediate. Assume nowthat there are i 6= j suh that zai < zbi and zaj > zbj . Sine every minimalproper fae of P has for diretion a bit vetor, we must have z ∈ P .(6) Let c = min{1z | z ∈ P}, F = {z ∈ P | 1z = c}, z∗ ∈ F and z ∈ P .Assume that z∗ 6≤ z. Then, z′ = min{z∗, z} ∈ P and 1z′ < 1z∗, whih isnot possible. Thus, z∗ ≤ z and F = {z∗}. Now, sine P is integral, z∗ ∈ P ′.
⊓⊔5.8 Proof of Theorem 5We an assume that C 6= ⊥. Let C= be the equalities of C and C≤ be theinequalities of C. Compute the normal form of C=|⊤|C≤ w.r.t. the rules of Figure6. This an be done in polynomial time w.r.t. the size of equalities. If the normalform is ⊥ then S(C) = ∅ and we are done. Otherwise, it is of the form ⊤|E|D. Let

D∞⊎Dℓ be the normal form of D w.r.t. the rules of Figure 7. It an be omputedin polynomial time w.r.t. the size of onstraints. Let P = {z ∈ Qn | M ′z ≤ v′}where M ′ and v′ are the matrix and the vetor assoiated to Dℓ. Compute
c = min{1z | z ∈ P} and z∗ ∈ {z ∈ P | 1z = c}. This an be done in polynomialtime w.r.t. the size of onstraints sine P is integral (see [27℄ p. 232). Finally,let mgs(C) = E(υ ⊎ ϕz∗) where υ ∈ S(D∞). We prove that this is the smallestsolution.Let ϕ ∈ S(C). By Lemma 7, ϕ = E(υ′⊎ϕ′) where υ′ ∈ S(D∞) and ϕ′ ∈ S(Dℓ).By Lemma 9, there exists ψ ∈ Sℓ(Dℓ) suh that ψ ⊑ ϕ′. By Lemma 10, zψ ∈ P ′.By Lemma 11, z∗ ≤ zψ. By Lemma 10, ϕz∗ ⊑ ϕzψ . By Lemma 10, ϕzψ ⊑ ψ.Thus, ϕz∗ ⊑ ϕ′ and mgs(C) ⊑ ϕ sine υ ≃A υ′.

