11 research outputs found

    Cluster Cosmology Without Cluster Finding

    Full text link
    We propose that observations of super-massive galaxies contain cosmological constraining power similar to conventional cluster cosmology, and we provide promising indications that the associated systematic errors are comparably easier to control. We consider a fiducial spectroscopic and stellar mass complete sample of galaxies drawn from the Dark Energy Spectroscopic Survey (DESI) and forecast how constraints on Omega_m-sigma_8 from this sample will compare with those from number counts of clusters based on richness. At fixed number density, we find that massive galaxies offer similar constraints to galaxy clusters. However, a mass-complete galaxy sample from DESI has the potential to probe lower halo masses than standard optical cluster samples (which are typically limited to richness above 20 and halo mass above 10^13.5); additionally, it is straightforward to cleanly measure projected galaxy clustering for such a DESI sample, which we show can substantially improve the constraining power on Omega_m. We also compare the constraining power of stellar mass-limited samples to those from larger but mass-incomplete samples (e.g., the DESI Bright Galaxy Survey, BGS, Sample); relative to a lower number density stellar mass-limited samples, we find that a BGS-like sample improves statistical constraints by 60% for Omega_m and 40% for sigma_8, but this uses small scale information which will be harder to model for BGS. Our initial assessment of the systematics associated with supermassive galaxy cosmology yields promising results. The proposed samples have a 10% satellite fraction, but we show that cosmological constraints may be robust to the impact of satellites. These findings motivate future work to realize the potential of super-massive galaxies to probe lower halo masses than richness-based clusters and to avoid persistent systematics associated with optical cluster finding

    Leveraging waveform complexity for confident detection of gravitational waves

    Get PDF
    The recent completion of Advanced LIGO suggests that gravitational waves may soon be directly observed. Past searches for gravitational-wave transients have been impacted by transient noise artifacts, known as glitches, introduced into LIGO data due to instrumental and environmental effects. In this work, we explore how waveform complexity, instead of signal-to-noise ratio, can be used to rank event candidates and distinguish short duration astrophysical signals from glitches. We test this framework using a new hierarchical pipeline that directly compares the Bayesian evidence of explicit signal and glitch models. The hierarchical pipeline is shown to perform well and, in particular, to allow high-confidence detections of a range of waveforms at a realistic signal-to-noise ratio with a two-detector network

    Constraints on S8S_8 from a full-scale and full-shape analysis of redshift-space clustering and galaxy-galaxy lensing in BOSS

    Full text link
    We present a novel simulation-based cosmological analysis of galaxy-galaxy lensing and galaxy redshift-space clustering. Compared to analysis methods based on perturbation theory, our simulation-based approach allows us to probe a much wider range of scales, 0.4h1Mpc0.4 \, h^{-1} \, \mathrm{Mpc} to 63h1Mpc63 \, h^{-1} \, \mathrm{Mpc}, including highly non-linear scales, and marginalises over astrophysical effects such as assembly bias. We apply this framework to data from the Baryon Oscillation Spectroscopic Survey LOWZ sample cross-correlated with state-of-the-art gravitational lensing catalogues from the Kilo Degree Survey and the Dark Energy Survey. We show that gravitational lensing and redshift-space clustering when analysed over a large range of scales place tight constraints on the growth-of-structure parameter S8=σ8Ωm/0.3S_8 = \sigma_8 \sqrt{\Omega_{\rm m} / 0.3}. Overall, we infer S8=0.792±0.022S_8 = 0.792 \pm 0.022 when analysing the combination of galaxy-galaxy lensing and projected galaxy clustering and S8=0.771±0.027S_8 = 0.771 \pm 0.027 for galaxy redshift-space clustering. These findings highlight the potential constraining power of full-scale studies over studies analysing only large scales, and also showcase the benefits of analysing multiple large-scale structure surveys jointly. Our inferred values for S8S_8 fall below the value inferred from the CMB, S8=0.834±0.016S_8 = 0.834 \pm 0.016. While this difference is not statistically significant by itself, our results mirror other findings in the literature whereby low-redshift large scale structure probes infer lower values for S8S_8 than the CMB, the so-called S8S_8-tension.Comment: 22 pages, 16 figures, submitted to MNRAS, comments welcom

    Stellar and weak lensing profiles of massive galaxies in the Hyper-Suprime Cam survey and in hydrodynamic simulations

    No full text
    International audienceABSTRACT We perform a consistent comparison of the mass and mass profiles of massive (M⋆ > 1011.4 M⊙) central galaxies at z ∼ 0.4 from deep Hyper Suprime-Cam (HSC) observations and from the Illustris, TNG100, and Ponos simulations. Weak lensing measurements from HSC enable measurements at fixed halo mass and provide constraints on the strength and impact of feedback at different halo mass scales. We compare the stellar mass function (SMF) and the Stellar-to-Halo Mass Relation (SHMR) at various radii and show that the radius at which the comparison is performed is important. In general, Illustris and TNG100 display steeper values of α where MMvirαM_{\star } \propto M_{\rm vir}^{\alpha }. These differences are more pronounced for Illustris than for TNG100 and in the inner rather than outer regions of galaxies. Differences in the inner regions may suggest that TNG100 is too efficient at quenching in situ star formation at Mvir ≃ 1013 M⊙ but not efficient enough at Mvir ≃ 1014 M⊙. The outer stellar masses are in excellent agreement with our observations at Mvir ≃ 1013 M⊙, but both Illustris and TNG100 display excess outer mass as Mvir ≃ 1014 M⊙ (by ∼0.25 and ∼0.12 dex, respectively). We argue that reducing stellar growth at early times in M10910MM_\star \sim 10^{9-10} \, \mathrm{M}_{\odot } galaxies would help to prevent excess ex-situ growth at this mass scale. The Ponos simulations do not implement AGN feedback and display an excess mass of ∼0.5 dex at r < 30 kpc compared to HSC which is indicative of overcooling and excess star formation in the central regions. The comparison of the inner profiles of Ponos and HSC suggests that the physical scale over which the central AGN limits star formation is r ≲ 20 kpc. Joint comparisons between weak lensing and galaxy stellar profiles are a direct test of whether simulations build and deposit galaxy mass in the correct dark matter haloes and thereby provide powerful constraints on the physics of feedback and galaxy growth. Our galaxy and weak lensing profiles are publicly available to facilitate comparisons with other simulations

    Stellar and weak lensing profiles of massive galaxies in the Hyper-Suprime Cam survey and in hydrodynamic simulations

    Full text link
    We perform a consistent comparison of the mass and mass profiles of massive (M⋆ > 1011.4 M⊙) central galaxies at z ∼ 0.4 from deep Hyper Suprime-Cam (HSC) observations and from the Illustris, TNG100, and Ponos simulations. Weak lensing measurements from HSC enable measurements at fixed halo mass and provide constraints on the strength and impact of feedback at different halo mass scales. We compare the stellar mass function (SMF) and the Stellar-to-Halo Mass Relation (SHMR) at various radii and show that the radius at which the comparison is performed is important. In general, Illustris and TNG100 display steeper values of α where M⋆∝Mαvir⁠. These differences are more pronounced for Illustris than for TNG100 and in the inner rather than outer regions of galaxies. Differences in the inner regions may suggest that TNG100 is too efficient at quenching in situ star formation at Mvir ≃ 1013 M⊙ but not efficient enough at Mvir ≃ 1014 M⊙. The outer stellar masses are in excellent agreement with our observations at Mvir ≃ 1013 M⊙, but both Illustris and TNG100 display excess outer mass as Mvir ≃ 1014 M⊙ (by ∼0.25 and ∼0.12 dex, respectively). We argue that reducing stellar growth at early times in M⋆∼109−10M⊙ galaxies would help to prevent excess ex-situ growth at this mass scale. The Ponos simulations do not implement AGN feedback and display an excess mass of ∼0.5 dex at r < 30 kpc compared to HSC which is indicative of overcooling and excess star formation in the central regions. The comparison of the inner profiles of Ponos and HSC suggests that the physical scale over which the central AGN limits star formation is r ≲ 20 kpc. Joint comparisons between weak lensing and galaxy stellar profiles are a direct test of whether simulations build and deposit galaxy mass in the correct dark matter haloes and thereby provide powerful constraints on the physics of feedback and galaxy growth. Our galaxy and weak lensing profiles are publicly available to facilitate comparisons with other simulations

    Impact of property covariance on cluster weak lensing scaling relations

    No full text
    International audienceWe present an investigation into a hitherto unexplored systematic that affects the accuracy of galaxy cluster mass estimates with weak gravitational lensing. Specifically, we study the covariance between the weak lensing signal, ΔΣ, and the "true" cluster galaxy number count, Ngal, as measured within a spherical volume that is void of projection effects. By quantifying the impact of this covariance on mass calibration, this work reveals a significant source of systematic uncertainty. Using the MDPL2 simulation with galaxies traced by the SAGE semi-analytic model, we measure the intrinsic property covariance between these observables within the 3D vicinity of the cluster, spanning a range of dynamical mass and redshift values relevant for optical cluster surveys. Our results reveal a negative covariance at small radial scales (R ≲ R200c) and a null covariance at large scales (R ≳ R200c) across most mass and redshift bins. We also find that this covariance results in a 2-3 % bias in the halo mass estimates in most bins. Furthermore, by modeling Ngal and Ngal and ΔΣ as multi-(log)-linear equations of secondary halo properties, we provide a quantitative explanation for the physical origin of the negative covariance at small scales. Specifically, we demonstrate that the Ngal–ΔΣ covariance can be explained by the secondary properties of halos that probe their formation history. We attribute the difference between our results and the positive bias seen in other works with (mock)-cluster finders to projection effects. These findings highlight the importance of accounting for the covariance between observables in cluster mass estimation, which is crucial for obtaining accurate constraints on cosmological parameters
    corecore